Buffalo milk occupies an important place in the economy of dairy industry in India (45). Approximately 52.6% of the total milk production (21.36 million tons) per year is derived from twenty million lactating buffaloes against 44.7% produced by nearly forty-seven million milch cows. Further, 59.3% of world's buffalo milk production in 1967 was contributed by Indian buffaloes. A preference also appears to be developing in favour of buffalo rearing due to general hardiness of buffalo and its ability to live and produce under comparatively unfavourable conditions of habitat and feeding.

A considerable portion of milk in our country is utilised for manufacture of ghee. Of the total milk produced in the country (25), 45.23% was utilised for fluid consumption, 31.85% for 'ghee', 8.06% for 'dahi', 6.37% for 'butter', 4.74% for 'Khoa', 1.86% for 'ice-cream', 1.19% for 'chhanna' and 0.7% for 'cream' production. Of the total quantity of milk used for the manufacturing of milk products, 58.2% is converted in ghee. In other words, ghee worth crores of rupees is produced every year.
It is well recognised that there are considerable differences in several physico-chemical properties of buffalo milk in comparison with those of cow milk. Buffalo milk contains considerably higher proportions of fat, SNF and fat globules of larger size. The protein and lactose contents are also slightly higher in buffalo milk. A difference also exists in the salt balance of two milks. Significant dissimilarity also occurs in the heat stability, rennet coagulation time, make up of casein complex and densities of casein. Buffalo milk fat is known to have no carotene in it. Vitamin A potency of buffalo ghee is generally lower than that of cow ghee. Buffalo ghee is also believed to absorb oxygen more rapidly and thus is more prone to oxidative deterioration.

The information in regard to chemistry of cow milk/milk fat as applied to the manufacture of dairy products such as cheese, evaporated milk, sweetened and condensed milk is readily available. However, due to the differences in the physico-chemical properties of buffalo milk, this information cannot be directly applied to the manufacture of these dairy products. Further, the comparative richness of buffalo milk, particularly in fat level, has also posed problems such as adulteration and/or admixture.
From the above resume, it is apparent that cow milk differs considerably from buffalo milk in regard to their several physico-chemical properties. However, the data of unsaponifiable matter, although incomplete at times, are available only in regard to cow milk fat whereas that of buffalo milk fat are very limited. It may be conceived that unsaponifiable constituents of buffalo milk fat also might differ significantly from cow milk fat. This has occasioned the present study.