CONTENTS

ABBREVIATIONS

INTRODUCTION 1-14

REVIEW OF LITERATURE 15-86
- Brain adenosine levels 17
- Brain adenosine receptors: Types, Distribution, Function 19
 - Adenosine A_1 receptors 20
 - Adenosine A_{2A} receptors 21
 - Adenosine A_{2B} receptors 22
 - Adenosine A_3 receptors 23
- Estimation of endogenous adenosine and its metabolites 23
- Adenosine and Neuroprotection 27
- Neuroprotective role of adenosine in various neuronal disorders 30
 - Cerebral ischemia 30
 - Pain and inflammation 32
 - Parkinson’s disease 33
 - Alzheimer’s disease 34
 - Huntington’s disease 34
 - Schizophrenia 35
- Epilepsy 36
 - Animal models of epilepsy 39
 - Pentylenetetrazol-seizure threshold 40
 - Novel anticonvulsant drugs with adenosinergic mechanism of epilepsy 41
 - Adenosine and GABA 42
 - Adenosine and nitric oxide 45
 - Adenosine and serotonin receptors 48
 - Adenosine and cyclooxygenase 51
- Novel approaches in the therapeutic delivery of adenosine in epilepsy 55
- Drug Addiction and dependence 57
 - Putative neurotransmitters involved in drug addiction 58
 - Drug withdrawal 62
 - Oxidative stress in drug withdrawal 63
 - Mitochondrial enzyme activities and drug withdrawal 67
Existing Therapeutics for drug abuse and withdrawal

Alcohol
- Alcohol withdrawal syndrome
- Adenosine and alcohol withdrawal syndrome

Opioids
- Opioid withdrawal syndrome
- Adenosine and opioid withdrawal syndrome

Benzodiazepines
- Benzodiazepine withdrawal syndrome
- Adenosine and benzodiazepine withdrawal syndrome

AIMS AND OBJECTIVES

CHAPTER 1: DEVELOPMENT AND VALIDATION OF A REVERSE PHASE-HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (RP-HPLC) METHOD FOR THE ESTIMATION OF ADENOSINE AND OTHER NEUROTRANSMITTERS IN BRAIN TISSUES

Part-1: Development and validation of a RP-HPLC method for the estimation of adenosine and related purines in brain tissues of rats
 1.1.1. Introduction
 1.1.2. Experimental
 1.1.3. Results and Discussion

Part-2: Development and validation of a specific RP-HPLC method for the estimation of γ-aminobutyric acid in rat brain tissue samples using benzoyl chloride derivatization and UV/PDA detection
 1.2.1. Introduction
 1.2.2. Experimental
 1.2.3. Results and Discussion

CHAPTER 2: PENTYLENETETRAZOL-SEIZURE THRESHOLD AS A TOOL TO INVESTIGATE THE RELATIVE SENSITIVITY OF ANTIEPILEPTIC DRUGS

 2.1. Introduction
 2.2. Materials and methods
 2.3. Results and Discussion
CHAPTER 3: ON THE FUNCTIONAL INTERACTION OF ADENOSINERGIC SYSTEM WITH OTHER SIGNALING PATHWAYS AGAINST PENTYLENETETRAZOL-SEIZURE THRESHOLD PARADIGM IN MICE

Part-1: On the functional interaction between adenosine and nitric oxide signaling pathway against pentylenetetrazol-seizure threshold in mice

3.1.1. Introduction 157
3.1.2. Materials and methods 159
3.1.3. Results 160
3.1.4. Discussion 163

Part-2: On the functional interaction between adenosine and serotonergic system against pentylenetetrazol-seizure threshold in mice

3.2.1. Introduction 171
3.2.2. Materials and methods 172
3.2.3. Results 174
3.2.4. Discussion 180

Part-3: On the possible involvement of adenosinergic mechanism in the anticonvulsant effect of a selective cyclooxygenase-2 (COX-2) inhibitor against pentylenetetrazol-seizure threshold in mice

3.3.1. Introduction 189
3.3.2. Materials and methods 191
3.3.3. Results 192
3.3.4. Discussion 199

CHAPTER 4: NEUROPROTECTIVE EFFECT OF ADENOSINE A1 AND A2A RECEPTORS IN DRUG WITHDRAWAL SYNDROME

4.1. Introduction 208
4.2. Materials and methods 214
4.3. Results 228
4.4. Discussion 264

SUMMARY AND CONCLUSIONS 281-289

REFERENCES 290-334