TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Chapters</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. INTRODUCTION</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>1.1 Controlled Drug Delivery Systems</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.2 Controlled Release Biodegradable Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Development of Controlled Release Parenterals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.4 Controlled Release Unit/Multiparticulate Systems</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2. LITERATURE REVIEW</td>
<td>8-78</td>
</tr>
<tr>
<td></td>
<td>2.1 The Global HIV Epidemic</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.2 The HIV Basics</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2.1 The Anatomy of HIV</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.3 The Life cycle of HIV</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.4 The HIV-1 Infectious Process In-vivo</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Acute infection in Adults</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Perinatal Infection</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.4.3 Clinical findings in HIV-1 Infection</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.5 Treatment and Prevention of HIV/AIDS</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.5.1 HIV/AIDS Drug therapy and Limitations of ART</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.5.2 Novel Drug Delivery Strategies for ARV drugs</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.5.2.1 Controlled Drug Delivery Systems</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.5.3 Biodegradable Parenteral Microspheres</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.5.3.1 Controlled release by Polymeric Microspheres</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.5.4 Efficacy of Parenteral Microspheres in treating HIV/AIDS</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2.6 Biodegradable Polymers</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>2.6.1 Natural and Modified natural Polymers</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.6.2 Synthetic Polymers</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2.6.2.1 Poly (ester)</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2.6.2.2 Poly (ethylene glycol) block Copolymers</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>2.6.2.3 Poly (anhydride)</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.6.3 Properties of Biopolymers</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.6.3.1 Molecular weight of Polymer</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.6.3.2 Linearity of Polymer chain</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>2.6.3.3 Ratios of Co-polymer</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>2.6.3.4 Stereochemistry of the Monomer</td>
<td>44</td>
</tr>
</tbody>
</table>
2.6.4 Degradation of Biopolymers

2.6.5 Selection criteria for Biodegradable Polymers
 2.6.5.1 Polymer degradation Behavior
 2.6.5.2 Polymer mixtures and Alternative PLGA co-polymers
 2.6.5.3 Polymer properties Influencing Drug release
 2.6.5.4 Effect of Drug properties and Preparation process on Polymer characteristics

2.6.6 Relevant Properties of Drugs for Microencapsulation and Release
 2.6.6.1 Solubility of drug in Aqueous and Organic media
 2.6.6.2 Drug Stability

2.7 Microspheres
 2.7.1 Small Molecular weight Drugs
 2.7.2 Protein Therapeutics
 2.7.3 Preparation of Microspheres
 2.7.4 Methods of Encapsulation
 2.7.4.1 Solvent Evaporation/Extraction Techniques
 2.7.4.2 Coacervation (Phase separation)
 2.7.4.3 Spray-drying
 2.7.4.4 In situ forming Microparticles
 2.7.4.5 Melting Techniques
 2.7.4.6 Methods using Supercritical fluids (SCF)
 2.7.4.7 Current Trends in Microencapsulation

2.8 Unit/Multiparticulate Systems
 2.8.1 Matrix Tablets
 2.8.1.1 Fabrication of Sustained Release Products
 2.8.1.2 Mechanisms of release from hydrophilic matrices
 2.8.2 Multiparticulate Systems
 2.8.2.1 Formulation Aspects in Multiparticulate Dosage Forms

2.9 Drug Profile
 2.9.1 Description
 2.9.2 Mechanism of Action
 2.9.3 Antiviral Activity
 2.9.4 Pharmacokinetic Properties
 2.9.4.1 Absorption
 2.9.4.2 Distribution
2.9.4.3 Metabolism 74
2.9.4.4 Excretion 75
2.9.5 Dosage and Administration 75
2.9.6 Over dosage 75
2.9.7 Indications and Usage 75
2.9.8 Adverse Reactions 75
2.9.9 Drug Interactions 76
 2.9.9.1 Drug-drug Interactions 77
 2.9.9.2 Drug-food Interactions 77
2.9.10 Drug Resistance 77
2.9.11 Toxicology 78

3. RESEARCH ENVISAGED 79-87

4. MATERIALS & METHODS 88-123
 4.1 Materials 88
 4.2 Equipments 89
 4.3 Preformulation Studies 91
 4.3.1 Characterization of the Drug 92
 4.3.1.1 Ultra-Violet Spectra (UV) 92
 4.3.1.2 Infrared Spectrum (IR) 92
 4.3.1.3 Melting Point 92
 4.3.1.4 Solubility 92
 4.3.1.5 Particle size Distribution 93
 4.3.1.6 NMR Spectrum 93
 4.3.1.7 X-RAY Diffraction (XRD) 93
 4.3.1.8 Differential Scanning Calorimetry (DSC) 93
 4.3.2 Preparation of Standard Plots 94
 4.3.2.1 Preparation of Standard Plots 94
 Spectrophotometrically
 4.3.2.2 Preparation of Standard Plot using HPLC 95
 4.4 Preparation of Stavudine Loaded Polymeric Microspheres 96
 4.4.1 Polycaprolactone (PCL) Microspheres 97
 4.4.2 PLGA 85:15, RESOMER® 505H, RESOMER® 504H,
 RESOMER® 502H, PLA and PLLA Microspheres 100
 4.5 Characterization Studies 101
 4.5.1 Determination of Entrapment efficiency and Percentage Yield 101
 4.5.2 Scanning Electron Microscopy (SEM) 102
 4.5.3 Size Distribution Analysis 102
 4.5.4 Differential Scanning Calorimetric Studies (DSC) 103
4.5.5 Fourier Transform Infrared Spectroscopy (FTIR) 103
4.5.6 X-ray Diffraction Studies (XRD) 104
4.5.7 Residual Solvent Analysis 104
4.5.8 Confocal Laser Scanning Microscopy (CLSM) 106

4.6 Evaluation of Microspheres 107
 4.6.1 In-vitro Drug Release Studies 107
 4.6.2 Drug Release Kinetics 107
 4.6.3 Stability Studies 109
 4.6.4 Ex-vivo Evaluation 109
 4.6.5 In-vivo Pharmacokinetic Studies 115

4.7 Preparation of Unit/Multiparticulate Systems of Stavudine 117
 4.7.1 Preparation of Matrix Tablets of Stavudine 117
 4.7.2 Preparation of Stavudine Pellets 118
 4.7.3 Coating of Stavudine Pellets 118

4.8 Evaluation of Stavudine Tablets 118
 4.8.1 Dimensional Analysis 119
 4.8.2 Hardness 119
 4.8.3 Friability 119
 4.8.4 Drug Content 119
 4.8.5 In-vitro Release Studies 120
 4.8.6 Drug Release Kinetics 120
 4.8.7 Determination of Swelling Index 120
 4.8.8 Stability Studies 120

4.9 Characterization and Evaluation of Stavudine Pellets 121
 4.9.1 Size Analysis 121
 4.9.2 Shape Analysis 121
 4.9.3 Bulk and Tapped Densities 121
 4.9.4 Flow Properties 122
 4.9.5 Drug Content 122
 4.9.6 In-vitro Release Studies 123
 4.9.7 Drug Release Kinetics 123
 4.9.8 Stability Studies 123

5. RESULTS AND DISCUSSION 124-330

5.1 Biodegradable Polymeric Microspheres 124
 5.1.1 Preformulation Studies 124
 5.1.1.1 Ultra-Violet Spectrum (UV) 124
 5.1.1.2 Infrared Spectrum (IR) 125
5.1.1.3 Melting Point 126
5.1.1.4 Solubility 126
5.1.1.5 Particle size Distribution 126
5.1.1.6 NMR Spectrum 127
5.1.1.7 X-RAY Diffraction (XRD) 128
5.1.1.8 Differential Scanning Calorimetry (DSC) 129

5.1.2 Preparation of Standard Plots 129
5.1.2.1 Spectrophotometric Standard plots of Stavudine 129
5.1.2.2 Standard plot by HPLC 132
 5.1.2.2.1 The Standard plot in Distilled water 132
 5.1.2.2.2 The Calibration curve in Blood plasma 132

5.1.3 Studies of Biodegradable Polymeric Microspheres of PCL, PLGA 85:15, RESOMER® 505H, RESOMER® 504H, RESOMER® 502H, PLA and PLLA.
5.1.3.1 Percent yield and Entrapment efficiency 133
5.1.3.2 Particle size Distribution Analysis 138
5.1.3.3 Scanning Electron Microscopy 163
5.1.3.4 Effect of Polymer concentration and Viscosity 176
5.1.3.5 Effect of Surfactant concentration in External oil Phase 179
5.1.3.6 Fourier Transform Infrared Spectroscopy (FTIR) 180
5.1.3.7 X-Ray Diffraction Studies 184
5.1.3.8 Residual Solvent Analysis 189
5.1.3.9 Confocal Laser Scanning Microscopy (CLSM) 192
5.1.3.10 Differential Scanning Calorimetric Studies 195

5.1.4 Evaluation of Microspheres 205
5.1.4.1 In-vitro Drug release Studies 205
 5.1.4.1.1 In-vitro Release studies of
 RESOMER 505H® Microspheres 206
 5.1.4.1.2 In-vitro release studies of RESOMER 504H®
 and RESOMER 502H® microspheres 208
 5.1.4.1.3 In-vitro Release studies of PLA Microspheres 212
 5.1.4.1.4 In-vitro Release studies of PLLA Microspheres 214
5.1.4.2 Drug release Kinetics 216
5.1.4.3 Effect of Release media on Morphology and Surface topography of the Microspheres 221
5.1.4.4 Stability Studies 233
 5.1.4.4.1 Particle Size Distribution Studies 234
 5.1.4.4.2 Scanning Electron Microscopy 245
 5.1.4.4.3 DSC Studies 263
5.1.4.5 Ex-vivo Evaluation 272
 5.1.4.5.1 Cellular uptake/Engulfment studies 272
5.1.4.5.2 Cytotoxicity/Cell viability Studies
5.1.4.5.3 Hemolytic toxicity Studies
5.1.4.5.4 Histology and Biocompatibility Studies
5.1.4.6 *In-vivo* Pharmacokinetic Studies
5.1.4.6.1 Control group Studies
5.1.4.6.2 Treatment group Studies
[RESOMER® 505H Microspheres]
5.1.4.6.3 Treatment group Studies [PLA Microspheres]
5.1.4.6.4 Treatment group Studies [PLLA Microspheres]

5.2 Unit/Multiparticulate Systems
5.2.1 Characterization Study
5.2.1.1 Compatibility Studies
5.2.2 Evaluation of Stavudine Tablets
5.2.2.1 Physical Evaluation
5.2.2.2 Swelling Index
5.2.2.3 *In-vitro* Release Studies
5.2.2.3.1 Matrix Tablets of Carbopol 971P
5.2.2.3.2 Matrix Tablets of Carbopol 71G NF
5.2.2.3.3 Matrix Tablets of Polyethylene oxide
5.2.2.4 Drug Release Kinetics
5.2.2.5 Stability Studies

5.2.3 Evaluation of Stavudine Pellets
5.2.3.1 Characterization and Evaluation of Stavudine Pellets
5.2.3.1.1 Pellet Size Analysis
5.2.3.1.2 Pellet Shape Analysis
5.2.3.1.3 Bulk and Tapped Densities
5.2.3.1.4 Flow Properties
5.2.3.1.5 Drug Content
5.2.3.1.6 *In-vitro* Release Studies
5.2.3.2 Drug Release Kinetics
5.2.3.3 Stability Studies

6. SUMMARY AND CONCLUSION

6.1 Biodegradable Microspheres
6.2 Unit/Multiparticulate systems

7. REFERENCES

8. ACHIEVEMENTS