Chapter 1

INTRODUCTION

1.1 Bioavailability

1.1.1 Why improve oral bioavailability

1.1.2 Intestinal permeation enhancers

1.1.3 Metabolism inhibitors

1.1.4 Double modulation of absorption and metabolism

1.2 Piperine (RLJ:NE:210) as a bioavailability enhancer

1.2.1 Bioavailability enhancement activity

1.2.2 Mechanisms of bioavailability enhancement

1.2.2a Effect of piperine on drug metabolising enzymes

1.2.2b Effect on gastrointestinal absorption

1.2.3 Pharmacoodynamic interactions of piperine with drugs

1.2.4 Pharmacokinetics of piperine

1.2.4a Absorption

1.2.4b Distribution

1.2.4c Metabolism

1.2.4d Excretion

1.2.5 Physicochemical properties

1.2.6 Methods of analysis

1.2.7 Structure activity relationship for enzyme inhibition

1.2.8 Toxicity

1.3 Drugs selected for bioavailability enhancement with piperine

1.3.1 5 - Fluorouracil (5-FU)
1.3.1a Dihydropyrimidine dehydrogenase inhibition as a tool to improve therapeutic potential of 5-FU
1.3.1b 5-Ethynyluracil as a modulator of catabolism and antitumor activity of 5-FU
1.3.1c Miscellaneous modulation approaches

1.3.2 Zidovudine (AZT)
 1.3.2a Absorption and bioavailability of AZT
 1.3.2b Inhibition of glucuronidation of AZT

1.3.3 Cefixime
 1.3.3a Intestinal transport of cefixime
 1.3.3b Pharmacokinetics and bioavailability

Chapter 2
RESEARCH ENVISAGED

Chapter 3
MATERIALS AND METHODS

3.1 Materials
3.2 Animals
3.3 Methods
3.3.1 Isolation of piperine from oleoresin of Piper nigrum L. (Piperaceae)
3.3.2 Chemical synthesis of vanillic acid and piperonylic acid
 3.3.2a Chemical synthesis of vanillic acid from vanillin
 3.3.2b Chemical synthesis of piperonylic acid from piperonal
3.3.3 Effect of piperine and its metabolites on gastric emptying and gastrointestinal transit in rats and mice
3.3.4 Development of a new HPLC method for analysis of piperine in rat plasma and bile: Application to pharmacokinetics and biliary excretion
 3.3.4a Chromatography
 3.3.4b Calibration plot
3.3.4c Optimisation of extraction process 38
3.3.4d Intra and inter-assay variation 39
3.3.4e Analysis of samples 39
3.3.4f Comparative plasma concentration-time profile of piperine in solution and suspension form 39
3.3.4g Biliary excretion of piperine and piperic acid in rats 40

3.3.5 HPLC fingerprint profile of reported urinary metabolites of piperine for their detection in plasma, urine and faecal samples of rats.
3.3.5a Chromatography 41
3.3.5b Collection and analysis of plasma, urine and faecal samples for studies on metabolites 41

3.3.6 Partial purification and LC/MS/MS of metabolites from rat urine 42
3.3.6a Collection of urine 42
3.3.6b Partial purification of metabolites by column chromatography 42
3.3.6c LC/MS/MS analysis of partially purified metabolites 43

3.3.7 HPLC analysis of 5-fluorouracil (5-FU), azidothymidine (AZT) and cefixime in rat plasma
3.3.7a Chromatography 43
3.3.7b Analytical conditions for 5-fluorouracil 43
3.3.7c Calibration plot 44
3.3.7d Optimisation of extraction process 44
3.3.7e Sample preparation 44
3.3.7f Intra and inter-assay variation 44
3.3.7g Analytical conditions for AZT 44
3.3.7h Calibration plot 45
3.3.7i Sample preparation 45
3.3.7j Recovery studies 45
3.3.7k Intra and inter-assay variation 45
3.3.7l Analytical conditions for cefixime 45
3.3.7m Calibration plots 45
3.3.7n Sample preparation 46
3.3.7o Intra and inter-assay variation 46
3.3.8 Collection of blood samples for bioavailability studies in rats 46
3.3.9 Preparations of formulations for bioavailability studies 46
 3.3.9a Formulations of piperine, piperonal and piperonylic acid 46
 3.3.9b Formulations of 5-FU 47
 3.3.9c Formulations of AZT 48
 3.3.9d Formulations of Cefixime 49
3.3.10 Bioavailability studies of different formulations in rats 49
 3.3.10a Bioavailability studies of 5-FU of formulations 49
 3.3.10b Bioavailability studies of AZT formulations 50
 3.3.10c Bioavailability studies of Cefixime formulations 51
3.3.11 Pharmacokinetics data analysis 51
3.3.12 In-vitro cytotoxicity studies of 5-FU and piperine 51

Chapter 4

RESULTS AND DISCUSSION 53 - 188
4.1 Isolation of piperine and synthesis of vanillic acid and piperonylic acid 53
4.2 Effect of piperine and its metabolites on gastric emptying and gastro-intestinal transit in rats and mice 53
4.3 Development of a new HPLC method for analysis of piperine in rat plasma 72
4.4 Comparative plasma concentration-time profile of piperine in solution and suspension form 81
4.5 Studies on metabolism of piperine in rats 90
4.5.1 HPLC fingerprint profile of reported urinary metabolites of piperine 90
4.5.2 Detection of metabolites of piperine in urine, plasma and faecal samples

4.5.3 Partial purification of metabolites of piperine from rat urine by column chromatography

4.5.4 LC/MS/MS analysis of piperine and partially purified metabolites

4.6 Bioavailability studies of formulations of 5-FU, AZT and cefixime containing piperine or its metabolites

4.6.1 Analysis of 5-FU in rat plasma

4.6.2 Analysis of AZT in rat plasma

4.6.3 Analysis of cefixime in rat plasma, urine and bile

4.6.4 Preparation of formulations of 5-FU, AZT and Cefixime

4.6.5 Comparative bioavailability of 5-FU in different formulations

4.6.6 Comparative bioavailability of AZT in different formulations

4.6.7 Comparative bioavailability of cefixime in different formulations

4.7 Comparative in-vitro cytotoxicity of 5-FU alone and in combination with piperine

Chapter 5

SUMMARY

Chapter 6

REFERENCES