Table of Contents

1 Introduction
1.1 General introduction
1.2 Taxonomy and classification
1.3 Genetics
1.4 Tea improvement
1.4.1 Tea genetic resources
1.4.2 Collection of tea genetic resources
1.5 Genomic diversity
1.6 Genesis of the problem

2 Review of Literature
2.1 Molecular markers development and applications in tea
2.1.1 Population and Genetic Diversity
2.1.2 Spreading and cultivation in other parts of globe
2.1.3 Molecular identification and DNA fingerprinting
2.1.4 Studies on genetic relationships and phylogenetics
2.1.5 Genetic integrity and fidelity studies
2.1.6 Establishment of linkage map and quantitative trait loci (QTLs) mapping
2.1.7 SSR marker development

3 Material and Methods
3.1 Plant materials
3.2 Isolation of tea specific microsatellite markers
3.2.1 Identification of genomic microsatellites markers
3.2.1.1 Construction of microsatellites enriched genomic library
3.2.1.2 Microsatellites enriched genomic clone sequencing
3.2.1.3 Genomic SSRs identification
3.2.2 Identification of SSR from public expressed sequence tags (EST) data base
3.2.2.1 EST data mining, unigenes prediction and SSR detection
3.2.3 Functional characterization of unigenes containing SSRs
3.2.4 Microsatellite primer designing
3.2.5 PCR amplification and polymorphic potential evaluation
3.2.6 Cloning and sequencing of amplicon variants
3.3 AFLP analysis
3.4 Amplification of gene or spacer region in chloroplast genome
3.4.1 DNA fragment purification and nucleotide sequencing
3.5 Molecular data analysis
3.5.1 TEGMS and TUGMS markers
3.5.2 Comparison of AFLP and SSR markers

4 Results
4.1 Isolation of tea specific microsatellite or simple sequence repeats
4.1.1 Tea Enriched Genomic Microsatellite (TEGMS) markers development
4.1.1.1 Microsatellite enriched library construction
4.1.1.2 Isolation and characterization of microsatellites
4.1.1.3 Microsatellite markers development and amplification validations
4.1.1.4 Cross-species transferability and sequence comparison of orthologus SSR loci
4.1.1.5 Polymorphic potential of TEGMS markers
4.1.1.6 Extent of genetic variation and cluster analysis

4.1.2 Tea unigene derived microsatellite (TUGMS) markers from express sequence tags (ESTs) data base
4.1.2.1 ESTs/Unigenes dataset
4.1.2.2 Abundance and distribution of SSRs
4.1.2.3 UGMS primer designation
4.1.2.4 Annotations and functional classification
4.1.2.5 Marker evaluation and polymorphism detection
4.1.2.6 Cross-species transferability
4.1.2.7 Sequence comparison of SSR locus
4.1.2.8 Inter and intra specific genetic variations among the tea accessions
4.1.2.9 Cluster analysis

4.2 Evaluation of Microsatellite and AFLP markers for genetic diversity assessment of tea germplasm
4.2.1 AFLP analysis
4.2.2 SSR analysis
4.2.3 AFLP and SSR based genetic similarity
4.2.4 Cluster Analysis
4.2.4.1 AFLP analysis
4.2.4.2 SSR analysis
4.2.4.3 Combined AFLP & SSR analysis
4.2.5 Principal component analysis

4.3 Specific molecular markers for cultivar / varietals types identification
4.3.1 Cloning and detection of nucleotide sequence polymorphism
4.3.2 Species/ cultivar specific regions

5 Discussion
5.1 Isolation of tea specific microsatellite or simple sequence repeat markers
5.1.1. Tea Enriched Genomic Microsatellite (TEGMS) markers
5.1.1.1 Microsatellite markers development and cross-species transferability
5.1.1.2 Polymorphic potential of TEGMS markers
5.1.1.3 Extent of genetic variation and cluster analysis
5.1.2. Tea Unigene derived Microsatellite (TUGMS) markers
5.1.2.1 Abundance and distribution of SSRs and UGMS primer development
5.1.2.2 Functional characterization
5.1.2.3 Marker evaluation and polymorphism detection
5.1.2.4 Cross species amplification and sequence comparison
5.1.2.5 UGMS markers for evaluation of inter and intra specific genetic variations

5.2 Evaluation of microsatellite and AFLP markers for genetic diversity assessment of tea germplasm
5.2.1 Comparative of marker systems
5.2.2 Cluster analysis

5.3 Specific molecular markers for tea cultivar/ varietals types identification
5.3.1 Nucleotide Polymorphism in cpDNA

6 Conclusions

7 References

8 Publications