


[BKP 77] V. L. Baskov, I. V. Kuraeva, V. S. Protopopov, Heat transfer with the turbulent flow of a liquid at supercritical pressure in tubes under cooling conditions, Teplofizika Vysokikh Temperatur, volume 15, issue 1, 1977, pp. 81 - 86.


J. M. Corberán, J. Gonzálvez, P. Montes, R. Blasco, ‘ART’ a computer code to assist the design of refrigeration and A/C equipment, International Refrigeration and Air Conditioning Conference at Purdue, IN, USA, 2002.


Young-Soo Chang, Min Seok Kim, Modeling and performance simulation of a gas cooler for a CO$_2$ heat pump system, International Refrigeration and Air conditioning Conference, School of Mechanical Engineering, Purdue University, Paper 764, 2006.


[HG 08] Roland Handschuh, Guntner, Design criteria for CO$_2$ evaporators, GTZ Proklima - Natural Refrigerants - sustainable ozone and climate friendly
alternatives to HCFCs, 2008, pp. 25 - 35.


[IIR 00] International Institute of Refrigeration, 15th Informatory Note on Refrigerants - Carbon Dioxide as a Refrigerant, February 2000.


[KFSN 06] Vimal Kumar, Burhanuddin Faizee, Manisha Sharma, K.D.P. Nigam, Pressure drop and heat transfer study in tube-in-tube helical heat Exchanger, Chemical Engineering and Processing, 11th April 2006, pp. 4403-4416.


[KKP 70] E.A. Krasnoshchekov, I.V. Kuraeva, V. S. Protopopov, Local heat transfer of carbon dioxide at supercritical pressure under cooling conditions, Teplofizika Vysokikh Temperatur, volume 7, issue 5, 1970, pp. 856 - 862


[KPB 03] Man-Hoe Kim, Jostein Pettersen, Clark W. Bullard, Fundamental process and system design issues in CO₂ vapor compression systems, Progress in


[RSR 05] Timothy J. Rennie, Vijaya G.S. Raghavan, Numerical studies of a double-


[SP 06] Chang-Hyo Son, Seung-Jun Park, An experimental study on heat transfer


