Despite the development of a number of anti fungal agents, Amp-B formulated as a micellar suspension (Fungi zone; Bristol-mayers squibb, Princeton, N.J) remains one of the most effective agents in the treatment of systemic fungal infections. However, its use is often limited by the development of kidney toxicity manifested by renal vasoconstriction with a significant decrease in the glomerular filtration rates and renal plasma flow and by the wasting of renal potassium and magnesium. Further therapy with Amp-B is hampered by a number of serious adverse effects such as fever, chills, nausea, hypokalemia, and nephrotoxicity. Besides number of investigators provided experimental evidence to the extent that Amp-b treatment cause dose and time related toxic side effects leading to neurotoxicity, myocardialtoxicity, hepatotoxicity and nephrotoxicity.

Though number of mechanisms have been put forth by various scientists to explain the reasons for Amp-B induced toxic side effects in experimental animals, there is little or no experimental basis till date how Amp-B interact with the basic metabolism in laboratory models. To bridge this gap, the author has selected to study the effect of selected doses of Amp-B on some important metabolic parameters in an animal model i.e., albino rat.