LIST OF FIGURES

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Title of Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mechanics of Boring Process</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Surface roughness profile</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Correlation between Ultrasonic and Profilometer surface roughness</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Laser light and sensor arrangement for surface roughness prediction.</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Variation of grey value with surface roughness</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Single point cutting processes (a) Turning (b) Boring</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Generation of surface profile with the feed of tool marks</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>Sensors and their applications in process monitoring</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Calculation for optimum values of cutting parameters</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>Boring bar</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>Boring Bar used for Experimentation</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>Specially designed Boring Bar</td>
<td>41</td>
</tr>
<tr>
<td>13</td>
<td>Mounting of accelerometers on boring bar</td>
<td>43</td>
</tr>
<tr>
<td>14</td>
<td>B & K Make accelerometers (4507C- Miniature type)</td>
<td>44</td>
</tr>
<tr>
<td>15</td>
<td>AISI 1041 work pieces used for experimentation</td>
<td>45</td>
</tr>
<tr>
<td>16</td>
<td>Lathe Machine used for experimentation</td>
<td>49</td>
</tr>
<tr>
<td>17</td>
<td>ACE Make (Jobber XL/LM) CNC Lathe Machine</td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td>Mitutoyo makes Surftest SJ -201P</td>
<td>52</td>
</tr>
<tr>
<td>19</td>
<td>Experimental set-up for vibration measurement of boring Bar</td>
<td>55</td>
</tr>
<tr>
<td>20</td>
<td>Actual experimental set-up to measure the vibrations of boring bar</td>
<td>56</td>
</tr>
<tr>
<td>21</td>
<td>Experimental set-up for vibrations measurement</td>
<td>59</td>
</tr>
<tr>
<td>22</td>
<td>CNC Machine – ACE Make- Jobber – FANUC Control</td>
<td>65</td>
</tr>
</tbody>
</table>
Accelerometers mounting on boring bar for vibration measurement

Arrangement for off-line surface roughness measurement

Main effects plots

Vibration Spectrum at S -54 rpm, f- 0.045, doc- 0.25 mm

Vibration Spectrum at S -140, f- 0.045, doc- 0.5mm

Surface roughness profile for S -54 rpm, f- 0.045, doc- 0.25 mm

Spectrum of surface roughness for S -54 rpm, f- 0.045, doc- 0.25 mm

Surface roughness profile for S -54 rpm, f- 0.36, doc- 0.50 mm

Spectrum of surface roughness for S -54 rpm, f- 0.36, doc- 0.50 mm

Displacement plot for spindle speed 180 rpm, feed 0.045 mm/rev, doc 0.25 mm

Displacement plot for spindle speed 224 rpm, feed 0.036 mm/rev, doc 0.325 mm

Variation of Ra and tool tip displacement for spindle speed 54-224, feed 0.045 mm/rev, doc 0.25 mm

Variation of Ra and tool tip displacement for spindle speed 54-224, feed 0.36 mm/rev, doc 0.5 mm

Variation of Ra and tool tip displacement for spindle speed 140, doc 0.25 mm feed 0.045- 0.36 mm/rev

Variation of Ra and tool tip displacement for spindle speed 224, doc 0.5 mm, feed 0.045- 0.36 mm/rev

Variation of Ra and tool tip displacement for spindle speed 140, Feed 0.045 mm/rev doc 0.25 – 0.5 mm

Variation of Ra and tool tip displacement for spindle speed 224, feed 0.36mm/rev doc 0.25 – 0.5 mm
40. Variation of surface roughness (Ra) with RMS displacement of boring bar

41. Variation of acceleration against spindle speed 250-430 rpm, feed 20 mm / min and doc 0.8 mm

42. Variation of surface roughness against spindle speed 250-430 rpm, feed 20 mm / min and doc 0.8 mm

43. Variation of surface roughness with resultant RMS acceleration for speed 250-430 rpm, feed 2 mm / min and doc 0.2 mm

44. Variation of acceleration against spindle speed 250-430 rpm, feed 13 mm / min and doc 0.5 mm

45. Variation of surface roughness against spindle speed 250-430 rpm, feed 13 mm / min and doc 0.5 mm

46. Variation of surface roughness with resultant RMS acceleration for speed 250-430 rpm, feed 13 mm / min and doc 0.5 mm

47. Variation of acceleration against spindle speed 250-430 rpm, feed 20 mm / min and doc 0.8 mm

48. Variation of surface roughness against spindle speed 250-430 rpm, feed 20 mm / min and doc 0.8 mm

49. Variation of surface roughness with resultant RMS acceleration for speed 250-430 rpm, feed 20 mm / min and doc 0.8 mm

50. Variation of acceleration against spindle speed 250 rpm, feed 8-500 mm / min and doc 0.2 mm

51. Variation of surface roughness against spindle speed 250 rpm, feed 8-500 mm / min and doc 0.2 mm

52. Variation of surface roughness with resultant RMS acceleration for speed 250 rpm, feed 8-500 mm / min and doc 0.2 mm

53. Variation of acceleration against spindle speed 410 rpm, feed 8-500 mm / min and doc 0.4 mm

54. Variation of surface roughness against spindle speed 410 rpm, feed 8-500 mm / min and doc 0.4 mm

(iv)
55 Variation of surface roughness with resultant RMS acceleration for speed 410 rpm, feed 8-500 mm / min and doc 0.4 mm

56 Variation of acceleration against spindle speed 290rpm, feed 13 mm / min and doc 0.1-0.8 mm

57 Variation of surface roughness against spindle speed 290 rpm, feed 13 mm / min and doc 0.1-0.8mm

58 Variation of surface roughness with resultant RMS acceleration for speed 290 rpm, feed 13 mm / min and doc 0.1-0.8 mm

59 Variation of acceleration against spindle speed 430rpm, feed 32 mm / min and doc 0.1-0.8 mm

60 Variation of surface roughness against spindle speed 430 rpm, feed 32 mm / min and doc 0.1-0.8 mm

61 Variation of surface roughness with resultant RMS acceleration for speed 430 rpm, feed 32 mm / min and doc 0.1-0.8 mm

62 Variation of surface roughness with resultant of RMS acceleration

63 Flow chart of algorithm for control system

64 Control system for automatic adjustment of machining parameters

65 Model developed in Simulink tool of MatLab

66 Model simulated

67 Schematic block diagram of microprocessor based control system

68 Circuit diagram of speed control system of DC motors
LIST OF SYMBOLS

\[\text{Ra} \quad : \quad \text{Average surface roughness} \ (\mu m) \]

\[S \quad : \quad \text{Spindle Speed} \ (\text{rpm}) \]

\[f \quad : \quad \text{Feed} \ (\text{mm/rev}) \text{ or } (\text{mm/min}) \]

\[d \quad : \quad \text{Depth of cut} \ (\text{mm}) \]

\[V \quad : \quad \text{Cutting velocity} \ (\text{m/min}) \]

\[D \quad : \quad \text{Diameter of the work-piece} \ (\text{mm}) \]

\[d \quad : \quad \text{Diameter of boring bar} \ (\text{mm}) \]

\[L \quad : \quad \text{Length of boring bar} \ (\text{mm}) \]

\[a_1 \quad : \quad \text{RMS acceleration in radial direction} \ (\mu m/s^2) \]

\[a_2 \quad : \quad \text{RMS acceleration in tangential direction} \ (\mu m/s^2) \]

\[a_r \quad : \quad \text{Resultant RMS acceleration} \ (\mu m/s^2) \]

\[m \quad : \quad \text{Mass of boring bar} \ (\text{Kg}) \]

\[k \quad : \quad \text{Stiffness of boring bar} \ (\text{Kg/m}) \]

\[A \quad : \quad \text{Cross-section area of boring bar} \ (\text{m}^2) \]

\[E \quad : \quad \text{Modulus of Elasticity of boring bar material} \ (\text{N/m}^2) \]

\[I \quad : \quad \text{Mass moment of inertia of boring bar} \ (\text{m}^4) \]
\(\rho \) : Density of boring bar material (Kg/m\(^3\))

\(K_c \) : Unit cutting force (N/m\(^2\))

\(A_c \) : Chip thickness area (m\(^2\))

\(F_n \) : Nominal feed force (N)

\(\sigma_t \) : Tensile strength of work piece material (N/m\(^2\))