TABLE OF CONTENTS

Abstract (i)

Acknowledgement (ii)

List of Tables (iii)

List of Figures (iv)

List of Symbols (v)

List of Abbreviations (vi)

List of Appendices (vii)

Organization of Thesis (viii)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Title of Contents</th>
<th>Page Nos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Mechanics of Boring Process</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Surface Roughness and its Measurement</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Material Removal Rate (MRR) in Boring Process</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Machining Time in Boring Process</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Machining Parameters affecting Boring Process</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Optimization of Machining Parameters</td>
<td>6</td>
</tr>
<tr>
<td>1.7</td>
<td>Boring Bar Vibrations and its Control</td>
<td>7</td>
</tr>
<tr>
<td>1.8</td>
<td>On-line monitoring and control of Manufacturing Processes</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Literature Survey</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Overview</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Surface Roughness and its Evaluation</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Boring bar Vibrations and Chatter</td>
<td>16</td>
</tr>
</tbody>
</table>
2.4 Machining Parameters and Surface Roughness 21
2.5 Boring Bar Vibrations and Surface Roughness 24
2.6 On-line Monitoring and Control systems in Machining 26

3. Problem Identification and Formulation 32
3.1 Background of the proposed work and problem formulation 32
3.2 Problem Definition 35
3.3 Assumptions made during the Work 36
 3.3.1 Tool Material and Tool Geometry 36
 3.3.2 Workpiece Materials and Dimensions 37
 3.3.3 Machining Conditions 38

4. Experimental Set-up and Procedure 39
4.1 Selection of Boring bar 39
4.2 Selection of Vibration Sensors (Accelerometers) 42
4.3 Workpiece Material and Dimensions 45
4.4 Selection of Machining Parameters 47
4.5 Machine Tools used for Experimentation 48
4.6 Surface Roughness Measurement 51
4.7 Fundamental study of boring bar vibrations and surface roughness 52
4.8 In-depth analysis of boring bar vibrations and its Effect on Surface Roughness 57
4.9 Investigation of relation between Tool Displacement and Surface Roughness 59
4.10 Measurement of tool acceleration and surface roughness for variable cutting conditions 62
5. Results and Discussions

5.1 Study of boring bar vibrations and surface roughness using Taguchi method

5.2 Effect of boring bar vibrations on surface roughness

5.3 Variation of tool displacement and surface roughness for variable cutting conditions

5.4 Variation of tool acceleration and surface roughness for variable cutting conditions

6. Development of control system and control strategy for on-line monitoring and control of surface roughness.

6.1 Background

6.2 Investigation of correlations between tool acceleration, surface roughness and machining parameters

6.3 Validation of mathematical model and Error calculations

6.4 Selection of optimum machining conditions

6.5 Development of control algorithm for control of boring bar vibrations and surface roughness

6.6 Development of control system for automatic control of machining parameters

7. Simulation of the control system for on-line monitoring and control of surface roughness.

7.1 Introduction

7.2 Development of system model in Simulink tool of MatLab

7.3 Simulation of the model
8. Development of microprocessor based automatic speed control system for DC motors.
 8.1 Background
 8.2 Design of the system
 8.3 Performance of the system
9. Conclusions and Future Scope
 9.1 Conclusions
 9.2 Future Scope
10. References
11. Publications
12. Details of Research Grants
13. Appendices