LIST OF TABLE

<table>
<thead>
<tr>
<th>Table no.</th>
<th>Title</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Convection Heat Transfer Regimes. (Incropera et al., 2006)</td>
<td>08</td>
</tr>
<tr>
<td>2.1</td>
<td>Information of Elements and Individual Parts for 4×4 Pin Fin Heat Sink at Z/d = 6</td>
<td>55</td>
</tr>
<tr>
<td>2.2</td>
<td>Boundary Physics for Multi-jet Case</td>
<td>58</td>
</tr>
<tr>
<td>2.3</td>
<td>Solver Controls</td>
<td>59</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison of Four Different Turbulence Models</td>
<td>65</td>
</tr>
<tr>
<td>3.1</td>
<td>Observations for 3 × 3 Nozzle Array Jet Impingement on 4 × 4 Array Pin Fin Heat Sink with Minimum Cross Flow Condition</td>
<td>81</td>
</tr>
<tr>
<td>3.2</td>
<td>Observations for 3 × 3 Nozzle Array Jet Impingement on 4 × 4 Array Pin Fin Heat Sink with Semi Cross Flow Condition</td>
<td>82</td>
</tr>
<tr>
<td>3.3</td>
<td>Observations for 3 × 3 Nozzle Array Jet Impingement on 4 × 4 Array Pin Fin Heat Sink with Maximum Cross Flow Condition</td>
<td>83</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison between Experimental and Numerical Results for Minimum, Semi and Maximum Cross Flow Condition at Z/d = 6 to 10 and Re = 7000 to 11000.</td>
<td>111</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of Minimum Cross Flow and Effusion Slot Scheme for 4 × 4 Pin Fin Heat Sink</td>
<td>124</td>
</tr>
<tr>
<td>5.1</td>
<td>Orthogonal Array Selectors</td>
<td>137</td>
</tr>
<tr>
<td>5.2</td>
<td>L9 Array for 3 Parameters with 3 Levels</td>
<td>137</td>
</tr>
<tr>
<td>5.3</td>
<td>Heat Sinks Considered as Baseline for the Optimization</td>
<td>139</td>
</tr>
<tr>
<td>5.4</td>
<td>Control Parameters and Levels</td>
<td>140</td>
</tr>
<tr>
<td>5.5</td>
<td>Orthogonal Array for L9 Design</td>
<td>140</td>
</tr>
<tr>
<td>5.6</td>
<td>Experimental Design for Orthogonal Array of L9 Array and Finding Heat Transfer Coefficient</td>
<td>140</td>
</tr>
<tr>
<td>5.7</td>
<td>S/N Ratio for L9 Orthogonal Array</td>
<td>142</td>
</tr>
<tr>
<td>5.8</td>
<td>Sigma S/N Values for Heat Transfer Coefficient</td>
<td>142</td>
</tr>
<tr>
<td>5.9</td>
<td>Analysis of Variance for Heat Transfer Coefficient (h)</td>
<td>143</td>
</tr>
<tr>
<td>5.10</td>
<td>Optimum Working Parameters</td>
<td>143</td>
</tr>
<tr>
<td>5.11</td>
<td>Optimum Solution of Heat Sink</td>
<td>143</td>
</tr>
<tr>
<td>C-1</td>
<td>Case setup for computational domain</td>
<td>160</td>
</tr>
<tr>
<td>C-2</td>
<td>Boundaries and boundary details</td>
<td>161</td>
</tr>
<tr>
<td>C-3</td>
<td>Solver controls</td>
<td>163</td>
</tr>
</tbody>
</table>