LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xii</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xiii</td>
</tr>
</tbody>
</table>

Chapter 01. INTRODUCTION AND LITERATURE REVIEW 01

1.1 Electronic Cooling 01
1.2 Motivations 03
1.3 Heat Transfer Enhancement Techniques 04
 1.3.1 Passive Techniques 05
 1.3.2 Active Techniques 07
1.4 Jet Impingement Technique 07
 1.4.1 Hydrodynamics of Jet Impingement 09
 1.4.2 Classification of Jet impingement 12
 1.4.3 Multi-Jet Impingement 16
1.5 Extended Surface - Heat Sink 18
 1.5.1 Material for Heat Sinks 19
 1.5.2 Fin Efficiency and Effectiveness 19
1.6 Literature Review 21
 1.6.1 Single Jet Impingement on Flat Plate 22
 1.6.2 Multi-Jet Impingement on Flat Plate 28
 1.6.3 Single Jet Impingement on Pin Fin Heat Sink 32
 1.6.4 Multi-Jet Impingement with Effusion Holes/Slots 34
 1.6.5 Multi-Jet impingement on Pin Fin Heat Sink 35
Chapter 04. OPTIMIZATION OF MULTI-JET IMPINGEMENT ON FLAT PLATE HEAT SINK

4.2 Pitch Optimization of Multi-Jet Impingement on Flat Plate Heat Sink 91

4.3 Analysis of 3 × 3 Nozzle Array Impingement on Flat plate 98

4.4 Comparison of Single and Multi-Jet Impingement on Flat Plate Heat Sink 100

4.5 Analysis of Multi-Jet (3 × 3 Nozzle Array) Impingement on 4 × 4 Array Pin Fin Heat Sink 102

4.5.1 Effect of Reynolds number 102

4.5.2 Effect of Z/d and Cross Flow 104

4.5.3 Validation with Experimental Results 109

4.6 Comparison Between Single and Multi-Jet Impingement on Pin Fin Heat Sink 112

4.6.1 Velocity Contours for Single and Multi-jet Impingement 112

4.6.2 Effect of Re and Z/d on Temperature Distribution 114

4.6.3 Effect of Re and Z/d on Local and Average Nusselt Number 114

4.7 Comparison between Multi-Jet Impingement on Flat Plate and Pin Fin Heat Sink 118

4.8 Comparison between Conventional Air Exit Flow and Air Exit through Effusion Slots 120

4.9 Development of Co-relation for Multi-Jet Impingement on Pin Fin Heat Sink with Exit Flow through Effusion Slots 125

Chapter 05. OPTIMIZATION OF PIN FIN HEAT SINK 131

5.1 Taguchi Method 132

5.2 Orthogonal Array 134

5.3 Optimization of Pin Fin Heat Sink 135

5.3.1 Design of Experiments (DOE) 135

5.3.2 Data Analysis 138
Chapter 06. CONCLUSIONS AND SCOPE FOR FUTURE WORK 145

6.1 Conclusions 145
6.2 Scope for Future Work 147

REFERENCES 148
PUBLICATIONS 156
APPENDIX
Appendix A Specifications of the Experimental Setup 157
Appendix B Different Formulae Used 158
Appendix C CFD Settings, Boundary Conditions and Solver Control 159
Appendix D Development of Co-Relation for Effusion Slot 163
Appendix E Multi-Jet Impingement on Flat Plate Correlations 164