References


References


References

Bayly CI, Black WC, Leger S, Ouimet N, Ouellet M, and Percival MD. Structure-based
312.

Beiche F, Brune K, Geisslinger G, Goppelt-Struebe M. Expression of cyclooxygenase
isoforms in the rat spinal cord and their regulation during adjuvant-induced arthritis.

Beiche F, Klein T, Nusing R, Neuhuber W, Goppelt-Struebe M. Localization of
cyclooxygenase-2 and prostaglandin E2 receptor EP3 in the rat lumbar spinal cord. J
Neuroimmunol 1998b; 89: 26–34.

Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain


Benoliel R, Wilensky A, Tal M, Eliav E. Application of a proinflammatory agent to the
orbital portion of the rat infraorbital nerve induces changes indicative of ongoing

Bergstrom S, Danielsson H, and Samuelsson B. The enzymatic formation of prostaglandin E2
from arachidonic acid prostaglandins and related factors. Biochim Biophys Acta

Bertrand S, Ng GY, Purisai MG, Wolfe SE, Severidt MW, Nouel D, Robitaille R, Low MJ,
O'Neill GP, Metters K, Lacaille JC, Chronwall BM, Morris SJ. The anticonvulsant,
antihyperalgesic agent gabapentin is an agonist at brain γ-aminobutyric acid type B
receptors negatively coupled to voltage-dependent calcium channels. J Pharmacol

Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature

Bjorkman R. Central antinociceptive effects of non-steroidal anti-inflammatory drugs and
103(Suppl.): 1-44.

Blackburn-Munro G, Erichsen HK. Antiepileptics and the treatment of neuropathic pain:

Bluthe RM, Lestage J, Rees G, Bristow A, Dantzer R. Dual effect of central injection of
recombinant rat interleukin-4 on lipopolysaccharide induced sickness behaviour in rats,
Neuropsychopharmacology 2002; 26: 86-93.

Boje KM, Jaworowicz D Jr, Raybon JJ. Neuroinflammatory role of prostaglandins during
experimental meningitis: evidence suggestive of an in vivo relationship between

Bolin LM, Verity AN, Silver JE, Shooter EM, Abrams JS. Interleukin-6 production by

Bolton S, Bland-Ward PA, Gaodsbry PJ. Sensitization of trigeminal nucleus caudalis neurones
by dural prostaglandin E2 application in the anesthetized cat. Cephalalgia 2001; 21:
353-354.

Bos CL, Richel DJ, Ritsema T, Peppelenbosch MP, Versteeg HH. Prostanoids and prostanoid

Bowsher D. The lifetime occurrence of herpes zoster and prevalence of postherpetic
neuralgia: A retrospective survey in an elderly population. Eur J Pain 1999; 3: 335-
342.
References


Bursztajn S, Rutkowski MD, Deleo JA. The role of the N-methyl-D-aspartate receptor NR1 subunit in peripheral nerve injury-induced mechanical allodynia, glial activation and chemokine expression in the mouse. Neuroscience 2004; 125: 269-275.


References


Cizkova D, Marsala J, Lukacova N, Marsala M, Jergova S, Orendacova J, Yaksh TL. Localization of N-type Ca2+ channels in the rat spinal cord following chronic


References


Coyle DE. Partial peripheral nerve injury leads to activation of astroglia and microglia, which parallels the development of allodynic behavior. Glia 1998; 23: 75-83.


Davies NM, Good RI, Roupe KA, Yanetz JA. Cyclooxygenase-3: Axiom, dogma, anamoly, enigma or slice error?– not as easy as 1, 2, 3. J Pharm Pharmaceut Sci 2003; 7: 217-226.


Decosterd I, Ji RR, Abdi S, Tate S, Woolf CJ. The pattern of expression of the voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models. Pain 2002; 96: 269-277.


References


396
References


References


Fink K, Meder W, Dooley DJ, Gothert M. Inhibition of neuronal Ca\(^{2+}\) influx by gabapentin and subsequent reduction of neurotransmitter release from rat neocortical slices. Br J Pharmacol 2000; 130: 900-906.


Flower RJ, Vane JR. Inhibition of prostaglandin synthetase in brain explains the anti-pyretic activity of paracetamol (4-acetamidophenol). Nature (Lond) 1972; 240: 410-411.


Franek M, Vaculin S, Rokya R. GABA(B) receptor agonist baclofen has non-specific antinociceptive effect in the model of peripheral neuropathy in the rat. Physiol Res 2004; 53: 351-355.


Fu KY, Light AR, Maixner W. Relationship between nociceptors activity, peripheral edema, spinal microglial activation and long-term hyperalgesia induced by formalin. Neuroscience 2000; 101: 1127-1135.


398
References


References


References


References


References


http://www.bentham.org/cmc-sample/ryn/ryn.htm
http://www.gbtherapeutics.com/gbt/market.html
http://www.rsdcanada.org/parc/english/RSD-CRPS/history.htm


References


References


405


References


Kontinen VK, Meert TF. Predictive validity of animal models of neuropathic pain. Chapter 10; Proceedings of the 10th World Congress of Pain 2003, IASP press, Seattle, WA.


References


Levine JD, Taiwo YO. Involvement of the mu-opiate receptor in peripheral analgesia. Neuroscience 1999; 24: 409.


References


Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 2004; 84: 1051-1095.


References

Ma W, Eisenach JC. Cyclooxygenase-2 in the infiltrating inflammatory cells in injured nerve is universally up-regulated following various types of peripheral nerve injury. Neuroscience 2003a; 121: 691-704.


Malan TP, Mata HP, Porreca F. Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 2002; 96: 1161-1167.


Mannion RJ, Costigan M, Decosterd I, Amaya F, Ma QP, Holstege JC, Ji RR, Acheson A, Lindsay RM, Wilkinson GA, Woolf CJ. Neurotrophins: peripherally and centrally
References


Mark MA, Colvin LA, Duggan AW. Spontaneous release of immunoreactive neuropeptide Y from the central terminals of large diameter primary afferents of rats with peripheral nerve injury. Neuroscience 1998; 83: 581-589.


References


McMahon SB, Cafferty WB, Marchand F. Immune and glial cell factors as pain mediators and modulators. Exp Neurol 2005; 192: 444-462.


References


References

Murphy PG, Ramer MS, Borthwick L, Gauldie J, Richardson PM, Bisby MA. Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptides associated with chronic nerve constriction in mice. Eur J Neurosci 1999; 11: 2243-2253.


References


References


Pop-Busui R, Marinescu V, Van Huysen CV, Li F, Sullivan K, Greene DA, Larkin D, Stevens MJ. Dissection of metabolic, vascular, nerve conduction interrelationships in
References


Raghavendra V, Tanga F, DeLeo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther 2003a; 306: 624-630.


Ramer MS, Murphy PG, Richardson PM, Bisby MA. Spinal nerve lesion-induced mechanoolldynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain 1998; 78: 115-121.

418


Rodrigues AR, Duarte ID. The peripheral antinociceptive effect induced by morphine is associated with ATP-sensitive K(+) channels. Br J Pharmacol 2000; 129: 110-114.

References


References


References


Skyba DA, King EW, Sluka KA. Effects of NMDA and non-NMDA ionotropic glutamate receptor antagonists on the development and maintenance of hyperalgesia induced by repeated intramuscular injection of acidic saline. Pain 2002; 98: 69-78.


Sluka KA, Price MP, Breese NM, Stucky CL, Wemmie JA, Welsh MJ. Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 2003; 106: 229-239.


References


Sommer C, Schmidt C, George A. Hyperalgesia in experimental neuropathy is dependent on the TNF receptor 1. Exp Neurol 1998a; 151: 138-142


Sun Q, Tu H, Xing GG, Han JS, Wan Y. Ectopic discharges from injured nerve fibers are highly correlated with tactile alldynia only in early, but not late, stage in rats with spinal nerve ligation. Exp Neurol 2005; 191: 128-136.
References


Svensson CI, Hua XY, Protter AA, Powell HC, Yaksh TL. Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE(2) release and thermal hyperalgesia. Neureport 2003; 14: 1153-1137.


References


References


Turnbach ME, Seth Spraggins D, Randich A. Spinal administration of prostaglandin E2 or prostaglandin F2α primarily produces mechanical hyperalgesia that is mediated by nociceptive specific spinal dorsal horn neurons. Pain 2002; 97: 33-45.


Varnum BC, Lim RW, Sukhatme VP, Herschman HR. Nucleotide sequence of a cDNA encoding TIS11, a message induced in Swiss 3T3 cells by the tumor promoter tetradecanoyl phorbol acetate. Oncogene 1989; 4: 119-120.


Wall PD, Devor M. Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain 1983; 17: 321-339.


References
References


429


References


Yamamoto T, Sakashita Y. The role of the spinal opioid receptor like1 receptor, the NK-1 receptor, and cyclooxygenase-2 in maintaining postoperative pain in the rat. Anesth Analg 1999; 89: 1203-1208.


References


