Table of Contents
TABLE OF CONTENTS

Abstract

Introduction

Review of Literature ..07-43

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Particulars</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Chapter 1</td>
<td>Target identification of environmental carcinogens in DNA repair proteome</td>
<td>44-88</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>44-45</td>
</tr>
<tr>
<td>1.1.2</td>
<td>DNA Repair Enzymes</td>
<td>45-48</td>
</tr>
<tr>
<td>1.2</td>
<td>Strategies</td>
<td>49-49</td>
</tr>
<tr>
<td>1.3</td>
<td>Materials & Methods</td>
<td>49-50</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Procurement and generation of 3D Structural Model of DNA Repair Pathway Enzymes, Environmental Carcinogens and theirs Metabolites</td>
<td>49-49</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Molecular Docking Studies of DNA repair enzymes with Environmental Carcinogens and theirs Metabolites</td>
<td>49-50</td>
</tr>
<tr>
<td>1.4</td>
<td>Results and Discussion</td>
<td>51-84</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Procurement and generation of 3D Structural Model of DNA Repair Pathway Enzymes, Environmental Carcinogens and theirs Metabolites</td>
<td>66-68</td>
</tr>
</tbody>
</table>
1.4.2 Molecular Docking Studies of DNA repair enzymes with Environmental Carcinogens and theirs Metabolites70-72
1.4.3 Structural docking analysis of PAHs, TSNA and their metabolites with enzymes involved in DNA repair pathways72-73
1.5 Conclusion...85-85
1.6 References..86-88

2. Chapter 2 Characterization of Interaction/Binding of Environmental Carcinogens with targets, and analysis of consequent function loss……89-136
2.1 Introduction..89-91
2.2 Strategies...91-91
2.3 Methods and Materials...92-95
2.3.1: Identification of binding/ Active sites by meta Pocket92-94
2.3.2: String Database for the prediction of most preferential functional partner................................. 94-95
2.3.3: ZDOCK calculations for protein-protein interaction analysis…95-95
2.4: Results..96-133
2.4.1: In silico binding/interaction site characterization of Environmental Carcinogens with their most probable biomolecular targets among DNA Repair Enzymes...96-126
2.4.2: Protein-Protein Interaction analysis..............................126-126
2.4.3: Evaluation of the Loss of Function...............................126-133
2.5: Discussion..133-134
2.6: Conclusion ..134-134
2.7: References..135-136

3. Chapter 3 Attenuation of Environmental Carcinogens induced toxicity by Nanoparticles.

3.1: Introduction...137-139
3.2: Strategies ..139-139
3.3: Method and Materials..140-143
 3.3.1: Reagents and consumables..140-141
 3.3.2: Cell culture and treatment conditions..............................141-141
 3.3.3: Micronucleus Assay..141-141
 3.3.4: MTT Assay..142-142
 3.3.5: ROS Assay..142-142
 3.3.6: Statistical analysis..143-143
3.4: Results...143-228
 3.4.1: Dose optimization..143-147

pg. vii
3.4.2 Determination of protective potential of Nanoparticles against carcinogens by MTT Assay..147-182

3.4.3 Determination of Anti Oxidant potential of Nanoparticles against Environmental Carcinogens induced Reactive Oxygen Species generation by ROS (DCFH-DA) Assay..183-219

3.4.4 Determination of Antigenotoxic potential of Nanoparticles against Environmental Carcinogens induced Micronucleus generation by MN Assay...220-228

3.5: Discussion...229-233

3.6: Conclusion..233-233

3.7: References...235-237

4. Chapter 4 Mechanism of protection by Nanoparticles against Environmental Carcinogens induced toxicity.

4.1: Introduction...238-240

4.2: Materials & Methods...240-253

4.21: Supported Operating Systems ...240-240

4.22: Processor and RAM Requirements...240-240

4.23: Disk Space Requirements ...240-240

pg. viii
4.24: Software..240-240
4.25: Method for Designing Crystal Structure of TiO₂ Nanoparticle...241-250
4.26: Procurements of Fullerene and Carbon based Nanotubes...250-250
4.27: Modelling of 3D structure of Environmental Carcinogens…..250-251
4.28: Biomolecules/Proteins Modeling..251-253
4.29: In Silico Binding Energy Analysis...253-253

4.3: Strategies..253-253
4.4: Results...254-262
4.5: Discussion..263-268
 4.5.1: Metal Based nanoparticles (TiO₂ NP).................................265-268
 4.5.2: Carbon Based nanoparticles (Fullerene, SWCNT & MWCNT)...265-268
4.6: Conclusion..268-269
4.7: References..273-275

Bibliography ...276-292

List of Publications, Awards, Fellowship, Appointments & Professional Membership
List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Particulars</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1:</td>
<td>3D structure of Carcinogens and their Metabolites</td>
<td>69-70</td>
</tr>
<tr>
<td>Figure 1.2:</td>
<td>Biomolecular Interaction of BAP with POLG1 & Binding Energy - 8.86 Kcal/Mol</td>
<td>80</td>
</tr>
<tr>
<td>Figure 1.3:</td>
<td>Biomolecular Interaction of BPDE with POLD1 & Binding Energy - 9.66Kcal/Mol</td>
<td>80</td>
</tr>
<tr>
<td>Figure 1.4:</td>
<td>Biomolecular Interaction of Chrysene with POLG1 & Binding Energy – 9.26Kcal/Mol</td>
<td>81</td>
</tr>
<tr>
<td>Figure 1.5:</td>
<td>Biomolecular Interaction of Chrysene Dioxide with POLG1 & Binding Energy – 8.98 Kcal/Mol</td>
<td>81</td>
</tr>
<tr>
<td>Figure 1.6:</td>
<td>Biomolecular Interaction of DMBA with HUS1 & Binding Energy – 8.78 Kcal/Mol</td>
<td>82</td>
</tr>
<tr>
<td>Figure 1.7:</td>
<td>Biomolecular Interaction of DMBAepoxide with RRM2B (p52R2) & Binding Energy – 9.33 Kcal/Mol</td>
<td>82</td>
</tr>
<tr>
<td>Figure 1.8:</td>
<td>Biomolecular Interaction of NNK with Uracil-DNA glycosylase Binding Energy – 7.82Kcal/Mol</td>
<td>83</td>
</tr>
<tr>
<td>Figure 1.9:</td>
<td>Biomolecular Interaction of NNAL with Single-strand selective monofunctional uracil DNA glycosylase (SMUG-1) & Binding Energy – 7.81Kcal/Mol</td>
<td>83</td>
</tr>
</tbody>
</table>
Figure 1.10: Biomolecular Interaction of BPDE with Human DNA Binding Energy – 8.61 Kcal/Mol. ...84

Figure 1.11: Biomolecular Interaction of Chrysene diolepoxide with Human DNA Binding Energy – 8.59 Kcal/Mol ...84

Figure 2.1: The illustration of the metaPocket 2.0 procedure93

Figure 2.2: Screen Shot of String Database ..95

Figure 2.3: Interaction networks of enzymes involved in DNA repair mechanism ...128

Figure 3.1: Identification of cell viability & Dose optimization after 24 h of exposure to various concentrations of BaP. ...143

Figure 3.2: Identification of cell viability & Dose optimization after 24 h of exposure to various concentrations of Chrysene.144

Figure 3.3: Identification of cell viability & Dose optimization after 24 h of exposure to various concentrations of DMBA ..145

Figure 3.4: Identification of cell viability & Dose optimization after 24 h of exposure to various concentrations of NNK.146

Figure 3.5: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 μM/ml conc. of BaP, 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of TiO2 NPs & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc.
of TiO2 NPs along with 1 & 10 μM/ml conc. of BaP, for 6, 12 & 24 h, as measured by MTT assay ...150

Figure 3.6: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 μM/ml conc. of Chrysene, 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of TiO2 NPs & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of TiO2 NPs along with 1 & 10 μM/ml conc. of Chrysene, for 6, 12 & 24 h, as measured by MTT assay ...152

Figure 3.7: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 μM/ml conc. of DMBA, 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of TiO2 NPs & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of TiO2 NPs along with 1 & 10 μM/ml conc. of DMBA, for 6, 12 & 24 h, as measured by MTT assay. ...154

Figure 3.8: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 μM/ml conc. of NNK, 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of TiO2 NPs & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of TiO2 NPs along with 1 & 10 μM/ml conc. of NNK, for 6, 12 & 24 h, as measured by MTT assay. ...156

Figure 3.9: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 μM/ml conc. of BaP, 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of Fullerenes & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc.
of Fullerenes along with 1 & 10 µM/ml conc. of BaP, for 6, 12 & 24 h, as measured by MTT assay. ...158

Figure 3.10: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 µM/ml conc. of Chrysene, 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of Fullerenes & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of Fullerenes along with 1 & 10 µM/ml conc. of Chrysene, for 6, 12 & 24 h, as measured by MTT assay. ...160

Figure 3.11: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 µM/ml conc. of DMBA, 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of Fullerenes & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of Fullerenes along with 1 & 10 µM/ml conc. of DMBA, for 6, 12 & 24 h, as measured by MTT assay. ...162

Figure 3.12: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 µM/ml conc. of NNK, 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of Fullerenes & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of Fullerenes along with 1 & 10 µM/ml conc. of NNK, for 6, 12 & 24 h, as measured by MTT assay. ...164

Figure 3.13: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 µM/ml conc. of BaP, 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of SWCNT & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of...
SWCNT along with 1 & 10 μM/ml conc. of BaP, for 6, 12 & 24 h, as measured by MTT assay. ...166

Figure 3.14: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 μM/ml conc. of Chrysene, 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of SWCNT & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of SWCNT along with 1 & 10 μM/ml conc. of Chrysene, for 6, 12 & 24 h, as measured by MTT assay. ...168

Figure 3.15: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 μM/ml conc. of DMBA, 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of SWCNT & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of SWCNT along with 1 & 10 μM/ml conc. of DMBA, for 6, 12 & 24 h, as measured by MTT assay. ...170

Figure 3.16: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 μM/ml conc. of NNK, 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of SWCNT & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of SWCNT along with 1 & 10 μM/ml conc. of NNK, for 6, 12 & 24 h, as measured by MTT assay. ...172

Figure 3.17: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 μM/ml conc. of BaP, 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc. of MWCNT & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 μM/ml conc.
of MWCNT along with 1 & 10 µM/ml conc. of BaP, for 6, 12 & 24 h, as measured by MTT assay. ...174

Figure 3.18: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 µM/ml conc. of Chrysene, 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of MWCNT & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of MWCNT along with 1 & 10 µM/ml conc. of Chrysene, for 6, 12 & 24 h, as measured by MTT assay. ...176

Figure 3.19: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 µM/ml conc. of DMBA, 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of MWCNT & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of MWCNT along with 1 & 10 µM/ml conc. of DMBA, for 6, 12 & 24 h, as measured by MTT assay. ...178

Figure 3.20: Identification of cell viability after 6, 12 & 24 h of exposure to various concentrations of 1 & 10 µM/ml conc. of NNK, 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of MWCNT & co-exposure to 0.1, 0.5, 1.0, 2.0 & 5.0 µM/ml conc. of MWCNT along with 1 & 10 µM/ml conc. of NNK, for 6, 12 & 24 h, as measured by MTT assay. ...180

Figure 3.21: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 µM BaP, to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of TiO2 NPs and
co-exposure to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of TiO2 NPs along with 1 & 10 μM BaP, as assessed by DCFH-DA dye ..186

Figure 3.22: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM Chrysene, to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of TiO2 NPs and co-exposure to to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of TiO2 NPs along with 1 & 10 μM Chrysene, as assessed by DCFH-DA dye. ..188

Figure 3.23: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM DMBA, to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of TiO2 NPs and co-exposure to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of TiO2 NPs along with 1 & 10 μM DMBA, as assessed by DCFH-DA dye...190

Figure 3.24: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM NNK, to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of TiO2 NPs and co-exposure to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of TiO2 NPs along with 1 & 10 μM NNK, as assessed by DCFH-DA dye. ...192

Figure 3.25: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM BaP, to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of Fullerenes and co-exposure to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of Fullerenes along with 1 & 10 μM BaP, as assessed by DCFH-DA dye. ...194

Figure 3.26: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM Chrysene, to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of Fullerenes
and co-exposure to 0.1, 0.5, 1.0,2.0 and 5.0 mg/ml of Fullerenes along with 1 & 10 μM Chrysene, as assessed by DCFH-DA dye. ...196

Figure 3.27: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM DMBA, to 0.1, 0.5, 1.0,2.0 and 5.0 mg/ml of Fullerenes and co-exposure to 0.1, 0.5, 1.0,2.0 and 5.0 mg/ml of Fullerenes along with 1 & 10 μM DMBA, as assessed by DCFH-DA dye. ...198

Figure 3.28: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM NNK, to 0.1, 0.5, 1.0,2.0 and 5.0 mg/ml of Fullerenes and co-exposure to 0.1, 0.5, 1.0,2.0 and 5.0 mg/ml of Fullerenes along with 1 & 10 μM NNK, as assessed by DCFH-DA dye. ...200

Figure 3.29: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM BaP, to 0.1, 0.5, 1.0,2.0 and 5.0 mg/ml of SWCNT and co-exposure to 0.1, 0.5, 1.0,2.0 and 5.0 mg/ml of BaP along with 1 & 10 μM BaP, as assessed by DCFH-DA dye...202

Figure 3.30: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM Chrysene, to 0.1, 0.5, 1.0,2.0 and 5.0 mg/ml of SWCNT and co-exposure to 0.1, 0.5, 1.0,2.0 and 5.0 mg/ml of Chrysene along with 1 & 10 μM Chrysene, as assessed by DCFH-DA dye. ...204

Figure 3.31: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM DMBA, to 0.1, 0.5, 1.0,2.0 and 5.0 mg/ml of SWCNT and
co-exposure to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of DMBA along with 1 & 10 μM DMBA, as assessed by DCFH-DA dye. ...206

Figure 3.32: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM NNK, to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of SWCNT and co-exposure to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of NNK along with 1 & 10 μM DMBA, as assessed by DCFH-DA dye. ...208

Figure 3.33: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM BaP, to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of MWCNT and co-exposure to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of BaP along with 1 & 10 μM BaP, as assessed by DCFH-DA dye. ...210

Figure 3.34: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM Chrysene, to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of MWCNT and co-exposure to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of Chrysene along with 1 & 10 μM BaP, as assessed by DCFH-DA dye...212

Figure 3.35: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM DMBA, to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of MWCNT and co-exposure to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of DMBA along with 1 & 10 μM DMBA, as assessed by DCFH-DA dye. ...214

Figure 3.36: Percentage changes in ROS generation following 2, 6, 12 and 24 h exposure to 1 & 10 μM NNK, to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of MWCNT and
co-exposure to 0.1, 0.5, 1.0, 2.0 and 5.0 mg/ml of NNK along with 1 & 10 μM DMBA, as assessed by DCFH-DA dye. ...216

Figure 3.37: ROS generation in A549 cells during different exposure conditions ..219

Figure 3.38: Number of micronucleus/1000 cells after 24 h exposure to 1.0 μM BaP, Chrysene, DMBA and NNK to 0.1, 0.5 and 1.0 mg/ml of TiO2 NPs, and coexposure to 0.1, 0.5 and 1.0 mg/ml of TiO2 NPs along with 1.0 μM BaP, Chrysene, DMBA and NNK. ...221

Figure no 3.39: Number of micronucleus/1000 cells after 24 h exposure to 1.0 μM BaP, Chrysene, DMBA and NNK to 0.1, 0.5 and 1.0 mg/ml of Fullerenes, and coexposure to 0.1, 0.5 and 1.0 mg/ml of Fullerenes along with 1.0 μM BaP, Chrysene, DMBA and NNK. ...223

Figure 3.40: Number of micronucleus/1000 cells after 24 h exposure to 1.0 μM BaP, Chrysene, DMBA and NNK to 0.1, 0.5 and 1.0 mg/ml of SWCNT, and coexposure to 0.1, 0.5 and 1.0 mg/ml of SWCNT along with 1.0 μM BaP, Chrysene, DMBA and NNK. ...224

Figure 3.41: Number of micronucleus/1000 cells after 24 h exposure to 1.0 μM BaP, Chrysene, DMBA and NNK to 0.1, 0.5 and 1.0 mg/ml of MWCNT, and coexposure to 0.1, 0.5 and 1.0 mg/ml of MWCNT along with 1.0 μM BaP, Chrysene, DMBA and NNK. ...226
Figure 3.42: MN generation in A549 cell during different exposure conditions.................................228

Figure 4.1: Crystal Cell Outline...242

Figure 4.2: Duplicacy of Co-ordinates..248

Figure 4.3: Unit Cell of Anatase...248

Figure 4.4(A&B): 3D structure of Anatase...249

Figure 4.5: Modeled structures of AHR showing 83.5% of amino acid residues in favored region of Ramachandran plot...252

Figure 4.6: DOPE score detail of nAch modeled by Modeler 9.10.............253

Figure 4.7: π- π overlapping geometry causes the PHAs adsorption on the surface of CNTs, which help to minimize the electrostatic repulsions by the parallel displacement of aromatic ring of both PAHs and CNTs....................................267

Figure 4.8: Interaction Analysis of MWCNT with NNK.........................269

Figure 4.9: Interaction Analysis of SWCNT with NNK............................270

Figure 4.10: Interaction Analysis of SWCNT with DMBA.....................270

Figure 4.11: Interaction Analysis of MWCNT with Chrysene.................271

Figure 4.12: Interaction Analysis of Fullerene with BaP.......................271

Figure 4.13: Interaction Analysis of TiO$_2$NP with BaP.......................272

pg. xx
List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Particulars</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table No.1.1:</td>
<td>Total List of DNA Repair Enzymes ...51 to 65</td>
<td></td>
</tr>
<tr>
<td>Table No. 1.2:</td>
<td>Modeled & Submitted DNA Repair Enzymes structure in PMDB..66 to 68</td>
<td></td>
</tr>
<tr>
<td>Table No. 1.3:</td>
<td>List of Most Probable Bio-Molecular Target of Environmental Carcinogens among DNA Repair Enzymes... 74 to 79</td>
<td></td>
</tr>
<tr>
<td>Table No.2.1:</td>
<td>Binding interaction analysis of most probable Biomolecular Targets among DNA Repair Enzymes & Characterization of their Binding Residues by Meta Pocket..97 to 126</td>
<td></td>
</tr>
<tr>
<td>Table No.2.2:</td>
<td>List of DNA Repair Enzyme’s Function Loss by Environmental Carcinogens..129 to 133</td>
<td></td>
</tr>
<tr>
<td>Table No.3.1:</td>
<td>Dose optimization analysis of BaP..144</td>
<td></td>
</tr>
<tr>
<td>Table No.3.2:</td>
<td>Dose optimization analysis of Chrysene............144 to 145</td>
<td></td>
</tr>
<tr>
<td>Table No.3.3:</td>
<td>Dose optimization analysis of DMBA..145</td>
<td></td>
</tr>
<tr>
<td>Table No.3.4:</td>
<td>Dose optimization analysis of NNK..146</td>
<td></td>
</tr>
<tr>
<td>Table No-3.5:</td>
<td>(A) Identification of cell viability after 6, 12 & 24 h of exposure to 1μM concentrations of BaP and TiO$_2$ NP..150</td>
<td></td>
</tr>
</tbody>
</table>
Table No-3.5: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to 1μM concentrations of BaP and TiO$_2$ NP..151

Table No-3.5: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10μM concentrations of BaP and TiO$_2$ NP..151

Table No-3.6: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1μM concentrations of Chrysene and TiO$_2$ NP..152

Table No-3.6: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to 1μM concentrations of Chrysene and TiO$_2$ NP..153

Table No-3.6: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10μM concentrations of Chrysene and TiO$_2$ NP..153

Table No-3.7: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1μM concentrations of DMBA and TiO$_2$ NP..154

Table No-3.7: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to 1μM concentrations of DMBA and TiO$_2$ NP..155

Table No-3.7: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10μM concentrations of DMBA and TiO$_2$ NP..155.

Table No-3.8: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1μM concentrations of NNK and TiO$_2$ NP..156

pg. xxii
Table No-3.8: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1μM concentrations of NNK and TiO₂ NP…………………………………………………157

Table No-3.8: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10μM concentrations of NNK and TiO₂ NP……………………………………157

Table No-3.9: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1μM concentrations of BaP and Fullerene……………………………………158

Table No-3.9: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to 1μM concentrations of BaP and Fullerene……………………………………159.

Table No-3.9:(C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10μM concentrations of BaP and Fullerene……………………………………159

Table No-3.10: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1μM concentrations of Chrysene and Fullerene……………………………………160

Table No-3.10: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to 1μM concentrations of Chrysene and Fullerene……………………………………161

Table No-3.10: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10μM concentrations of Chrysene and Fullerene……………………………………161

Table No-3.11: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1μM concentrations of DMBA and Fullerene……………………………………162

pg. xxiii
Table No-3.11: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to 1μM concentrations of DMBA and Fullerene..............................163

Table No-3.11: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10μM concentrations of DMBA and Fullerene.................................163

Table No-3.12: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1μM concentrations of NNK and Fullerene..164

Table No-3.12: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to 1μM concentrations of NNK and Fullerene..165

Table No-3.12: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10μM concentrations of NNK and Fullerene..165

Table No-3.13: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1μM concentrations of BaP and SWCNT...166

Table No-3.13: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to 1μM concentrations of BaP and SWCNT...167

Table No-3.13: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10μM concentrations of BaP and SWCNT...167

Table No-3.14: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1μM concentrations of Chrysame and SWCNT...168
Table No-3.14: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to 1µM concentrations of Chrysene and SWCNT……………………169

Table No-3.14: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10µM concentrations of Chrysene and SWCNT……………………169

Table No-3.15: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1µM concentrations of DMBA and SWCNT…………………………….170

Table No-3.15: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to 1µM concentrations of DMBA and SWCNT…………………………….171

Table No-3.15: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10µM concentrations of DMBA and SWCNT…………………………….171

Table No-3.16: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1µM concentrations of NNK and SWCNT…………………………………….172

Table No-3.16: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to 1µM concentrations of NNK and SWCNT…………………………………….173

Table No-3.16: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10µM concentrations of NNK and SWCNT…………………………………….173

Table No-3.17: (A) Identification of cell viability after 6, 12 & 24 h of exposure to 1µM concentrations of BaP and MWCNT…………………………………….174
Table No-3.17: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to \(1\mu\text{M}\) concentrations of BaP and MWCNT.................................175

Table No-3.17: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to \(10\mu\text{M}\) concentrations of BaP and MWCNT.................................175

Table No-3.18: (A) Identification of cell viability after 6, 12 & 24 h of exposure to \(1\mu\text{M}\) concentrations of Chrysene and SWCNT.................................176

Table No-3.18: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to \(1\mu\text{M}\) concentrations of Chrysene and MWCNT.................................177

Table No-3.18: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to \(10\mu\text{M}\) concentrations of Chrysene and SWCNT.................................177

Table No-3.19: (A) Identification of cell viability after 6, 12 & 24 h of exposure to \(1\mu\text{M}\) concentrations of DMBA and MWCNT.................................178

Table No-3.19: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to \(1\mu\text{M}\) concentrations of DMBA and MWCNT.................................179

Table No-3.19: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to \(10\mu\text{M}\) concentrations of DMBA and MWCNT.................................179

Table No-3.20: (A) Identification of cell viability after 6, 12 & 24 h of exposure to \(1\mu\text{M}\) concentrations of NNK and MWCNT.................................180
Table No-3.20: (B) Identification of cell viability after 6, 12 & 24 h of co-exposure to 1µM concentrations of NNK and MWCNT…………………..181

Table No-3.20: (C) Identification of cell viability after 6, 12 & 24 h of co-exposure to 10µM concentrations of NNK and MWCNT…………………..181

Table No-3.21: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1µM concentrations of BaP and TiO₂ NP……………………186

Table No-3.21: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1µM concentrations of BaP and TiO₂ NP……………………187

Table No-3.21: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10µM concentrations of BaP and TiO₂ NP……………………187

Table No-3.22: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1µM concentrations of Chrysene and TiO₂ NP…………………188

Table No-3.22: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1µM concentrations of Chrysene and TiO₂ NP…………………189

Table No-3.22: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10µM concentrations of Chrysene and TiO₂ NP…………………189

Table No-3.23: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1µM concentrations of DMBA and TiO₂ NP…………………190
Table No-3.23: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1μM concentrations of DMBA and TiO$_2$ NP...............................191

Table No-3.23: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10μM concentrations of DMBA and TiO$_2$ NP...............................191

Table No-3.24: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1μM concentrations of NNK and TiO$_2$ NP.................................192

Table No-3.24: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1μM concentrations of NNK and TiO$_2$ NP.................................193

Table No-3.24: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10μM concentrations of NNK and TiO$_2$ NP.................................193

Table No-3.25: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1μM concentrations of BaP and Fullerene.................................194

Table No-3.25: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1μM concentrations of BaP and Fullerene.................................195

Table No-3.25: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10μM concentrations of BaP and Fullerene.................................195

Table No-3.26: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1μM concentrations of Chrysene and Fullerene..............................196
Table No-3.26: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1μM concentrations of Chrysene and Fullerene…………………197

Table No-3.26: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10μM concentrations of Chrysene and Fullerene…………………197

Table No-3.27: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1μM concentrations of DMBA and Fullerene……………………198

Table No-3.27: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1μM concentrations of DMBA and Fullerene……………………199

Table No-3.27: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10μM concentrations of DMBA and Fullerene…………………199

Table No-3.28: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1μM concentrations of NNK and Fullerene……………………200

Table No-3.28: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1μM concentrations of NNK and Fullerene……………………201

Table No-3.28: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10μM concentrations of NNK and Fullerene…………………201

Table No-3.29: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1μM concentrations of BaP and SWCNT…………………202
Table No-3.29: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1μM concentrations of BaP and SWCNT.................................203

Table No-3.29: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10μM concentrations of BaP and SWCNT...............................203

Table No-3.30: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1μM concentrations of Chrysene and SWCNT.................................204

Table No-3.30: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1μM concentrations of Chrysene and SWCNT.................................205

Table No-3.30: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10μM concentrations of Chrysene and SWCNT.................................205

Table No-3.31: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1μM concentrations of DMBA and SWCNT.................................206

Table No-3.31: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1μM concentrations of DMBA and SWCNT.................................207

Table No-3.31: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10μM concentrations of DMBA and SWCNT.................................207

Table No-3.32: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1μM concentrations of NNK and SWCNT.................................208
Table No-3.32: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1µM concentrations of NNK and SWCNT..........................209

Table No-3.32: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10µM concentrations of NNK and SWCNT..............................209

Table No-3.33: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1µM concentrations of BaP and MWCNT.................................210

Table No-3.33: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1µM concentrations of BaP and MWCNT.................................211

Table No-3.33: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10µM concentrations of BaP and MWCNT.................................211

Table No-3.34: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1µM concentrations of Chrysene and MWCNT.............................212

Table No-3.34: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1µM concentrations of Chrysene and MWCNT.............................213

Table No-3.34: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10µM concentrations of Chrysene and MWCNT.............................213

Table No-3.35: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1µM concentrations of DMBA and MWCNT............................214
Table No-3.35: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1µM concentrations of DMBA and MWCNT..215

Table No-3.35: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10µM concentrations of DMBA and MWCNT..215

Table No-3.36: (A) Identification of ROS generation after 2, 6, 12 & 24 h of exposure to 1µM concentrations of NNK and MWCNT..216

Table No-3.36: (B) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 1µM concentrations of NNK and MWCNT..217

Table No-3.36: (C) Identification of ROS generation after 2, 6, 12 & 24 h of co-exposure to 10µM concentrations of NNK and MWCNT..217

Table No-3.37: (A) Number of micronucleus/1000 cells, induced by various concentrations of Environmental Carcinogens (EC) and TiO₂ NP after 24 h exposure...222

Table No-3.37: (B) Number of micronucleus/1000 cells, induced by various concentrations of Environmental Carcinogens (EC) and co-exposure of TiO₂ NP and Environmental Carcinogens after 24 h exposure...222
Table No-3.38: (A) Number of micronucleus/1000 cells, induced by various concentrations of Environmental Carcinogens (EC) and Fullerene after 24 h exposure...223

Table No-3.38: (B) Number of micronucleus/1000 cells, induced by various concentrations of Environmental Carcinogens (EC) and co-exposure of Fullerene and Environmental Carcinogens after 24 h exposure...224

Table No-3.39: (A) Number of micronucleus/1000 cells, induced by various concentrations of Environmental Carcinogens (EC) and SWCNT after 24 h exposure...225

Table No-3.39: (B) Number of micronucleus/1000 cells, induced by various concentrations of Environmental Carcinogens (EC) and co-exposure of SWCNT and Environmental Carcinogens after 24 h exposure...225

Table No-3.40: (A) Number of micronucleus/1000 cells, induced by various concentrations of Environmental Carcinogens (EC) and MWCNT after 24 h exposure...226

Table No-3.40: (B) Number of micronucleus/1000 cells, induced by various concentrations of Environmental Carcinogens (EC) and co-exposure of MWCNT and Environmental Carcinogens after 24 h exposure...227
Table No. 4.1: Binding efficiencies of environmental carcinogens with carbon based nanoparticle Fullerene & CNTs..254-255

Table No. 4.2: Binding efficiencies of environmental carcinogens with Metal based Nanoparticle TiO$_2$ NP...256-256

Table No. 4.3: Comparative binding analysis of best and most probable biomolecular targets among DNA repair enzymes with environmental carcinogens, their metabolites and carbon based nanoparticle Fullerene. ...256-257

Table No. 4.4: Comparative binding analysis of best and most probable biomolecular targets among DNA repair enzymes with environmental carcinogens, their metabolites and carbon based nanoparticle SWCNT...257-258

Table No. 4.5: Comparative binding analysis of best and most probable biomolecular targets among DNA repair enzymes with environmental carcinogens, their metabolites and carbon based nanoparticle MWCNT...258-259

Table No. 4.5: Comparative binding analysis of best and most probable biomolecular targets among DNA repair enzymes with environmental carcinogens, their metabolites and carbon based nanoparticle MWCNT...259-259
Table No. 4.7: Comparative binding analysis of biomolecular target, environmental carcinogens and carbon based nanoparticle Fullerene...260-260

Table No. 4.8: Comparative binding analysis of biomolecular target, environmental carcinogens and carbon based nanoparticle SWCNT........260-261

Table No. 4.9: Comparative binding analysis of biomolecular target, environmental carcinogens and carbon based nanoparticle MWCNT..261-261

Table No. 4.10: Comparative binding analysis of biomolecular target, environmental carcinogens and Metal based nanoparticle TiO₂ NP..262-262
List of Symbols, Abbreviations & Nomenclatures

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>angstrom</td>
</tr>
<tr>
<td>Å³</td>
<td>Volume of Atoms within Unit Cell</td>
</tr>
<tr>
<td>BaP</td>
<td>Benzo alpha Pyrene</td>
</tr>
<tr>
<td>BPDE</td>
<td>7,8-Dihydro-7,8 dihydroxybenzo(a)pyrene,9,10-oxide</td>
</tr>
<tr>
<td>CDE</td>
<td>Chrysene1,2-diol-3,4-epoxide-2</td>
</tr>
<tr>
<td>DCFH-DA</td>
<td>2’,7’-dichlorodihydrofluorescein di-acetate</td>
</tr>
<tr>
<td>DMBA</td>
<td>2,7 Di methyl benzo anthracene</td>
</tr>
<tr>
<td>DMBAepoxide</td>
<td>2,7 Di methyl benzo anthracene -3,4 diol-1,2epoxide</td>
</tr>
<tr>
<td>GA</td>
<td>genetic algorithm</td>
</tr>
<tr>
<td>LGA</td>
<td>Lamarckian Genetic Algorithm</td>
</tr>
<tr>
<td>MN Assay</td>
<td>Micronucleus Assay</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolum bromide</td>
</tr>
<tr>
<td>MWCNT</td>
<td>Multi walled carbon Nanotubes</td>
</tr>
<tr>
<td>μg/mL</td>
<td>microgram/millilitre</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>NNAL</td>
<td>4-(methylnitrosamino)-1-(3-pyridyl)-1-butan-1-ol</td>
</tr>
<tr>
<td>NNK</td>
<td>3 4-(MethylNitrosamino)-1-(3-pyridyl)-1-butanone</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein data bank</td>
</tr>
<tr>
<td>RMSD</td>
<td>Root Mean Square Deviation</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SWCNT</td>
<td>Single walled carbon Nanotubes</td>
</tr>
<tr>
<td>TiO2 NP</td>
<td>Titanium di oxide Nanoparticle</td>
</tr>
<tr>
<td>vDW</td>
<td>Van der Waals</td>
</tr>
<tr>
<td>ΔG</td>
<td>Gibbs free energy</td>
</tr>
</tbody>
</table>