<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>The various constituents of the ecosphere and their relationship to the geoenvironment</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Map showing location of the study area (Dharamshala)</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Base Map of study area</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Map showing major streams flowing through the area</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Showing average maximum and minimum temperature (month wise) for the last 11 years (2000-2010)</td>
<td>10</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Showing average rainfall (month wise) for the last 11 years (2000-2010)</td>
<td>10</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>Showing average relative humidity (month wise) for the last 11 years (2000-2010)</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Showing population growth in Dharamshala</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Showing increase in Tibetan population</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>Showing tourists inflow in last 6 years</td>
<td>15</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>Showing increase in the number of hotels in last 6 years</td>
<td>15</td>
</tr>
<tr>
<td>Figure 1.12</td>
<td>View of Dal lake in 2008</td>
<td>17</td>
</tr>
<tr>
<td>Figure 1.13</td>
<td>View of Dal lake in 2009</td>
<td>17</td>
</tr>
<tr>
<td>Figure 1.14</td>
<td>View of Dal lake in 2010</td>
<td>17</td>
</tr>
<tr>
<td>Figure 1.15</td>
<td>Showing open dump</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.16</td>
<td>Showing entrance of Municipal waste dumping site</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.17</td>
<td>Showing open burning of inorganic waste</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.18</td>
<td>Showing dumping site without entrance control</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.19</td>
<td>Showing stray animals feeding on garbage</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.20</td>
<td>Showing rag picker collecting valuable waste</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.21</td>
<td>Showing present scenario of solid waste management in study area</td>
<td>21</td>
</tr>
<tr>
<td>Figure 1.22</td>
<td>Showing mining debris as a blot on the serene beauty of the area</td>
<td>23</td>
</tr>
</tbody>
</table>
Figure 1.23: Showing mine debris degrading the green cover................................. 23
Figure 1.24: Showing mass movement resulting in blockage of streams at Bhagsu Nag... 24
Figure 1.25: Showing mass movement resulting in blockage of streams at Khamiara.. 24
Figure 1.26: Representing landslide problem at Bhagsu nag.. 24
Figure 1.27: Showing quarry covered by rock debris and the worker is removing it to restart the quarrying operation.............................. 24
Figure 1.28: Impacts and management of geo-environment for obtaining ecologically stable area... 31
Figure 2.1: Procedure for preparation of different thematic map......................... 79
Figure 3.1: Map showing surface water sampling locations in study area............. 86
Figure 3.2: Showing temperature variation (lake water) at sampling sites during pre-monsoon and post-monsoon period 94
Figure 3.3: Showing concentration of EC (lake water) at sampling sites during pre-monsoon and post-monsoon period....................... 95
Figure 3.4: Showing concentration of TDS (lake water) at sampling sites during pre-monsoon and post-monsoon period....................... 95
Figure 3.5: Showing concentration of pH (lake water) at sampling sites during pre-monsoon and post-monsoon period............... 95
Figure 3.6: Showing concentration of calcium (lake water) at sampling sites during pre-monsoon and post-monsoon period............. 96
Figure 3.7: Showing concentration of magnesium (lake water) at sampling sites during pre-monsoon and post-monsoon period......................... 96
Figure 3.8: Showing concentration of sodium (lake water) at sampling sites during pre-monsoon and post-monsoon period............. 96
Figure 3.9: Showing concentration of potassium (lake water) at sampling sites during pre-monsoon and post-monsoon period.......................... 97
Figure 3.10: Showing concentration of bicarbonate (lake water) at sampling sites during pre-monsoon and post-monsoon period............. 97
Figure 3.11: Showing concentration of chloride (lake water) at sampling sites during pre-monsoon and post-monsoon period............. 97
Figure 3.12: Showing concentration of sulphate (lake water) at sampling sites during pre-monsoon and post-monsoon period........... 97
Figure 3.13: Showing concentration of phosphate (lake water) at sampling sites during pre-monsoon and post-monsoon period........... 98
Figure 3.14: Showing concentration of nitrate (lake water) at sampling sites during pre-monsoon and post-monsoon period........... 98
Figure 3.15: Showing concentration of fluoride (lake water) at sampling sites during pre-monsoon and post-monsoon period........... 98
Figure 3.16: Showing level of dissolved oxygen (lake water) at sampling sites during pre-monsoon and post-monsoon period........... 99
Figure 3.17: Showing BOD level (lake water) at sampling sites during pre-monsoon and post-monsoon period................................. 99
Figure 3.18: Showing COD level (lake water) at sampling sites during pre-monsoon and post-monsoon period................................. 100
Figure 3.19: Showing temperature variation (stream water) at sampling sites during pre-monsoon and post-monsoon period.......... 116
Figure 3.20: Showing concentration of EC (stream water) at sampling sites during pre-monsoon and post-monsoon period.......... 116
Figure 3.21: Showing concentration of TDS (stream water) at sampling sites during pre-monsoon and post-monsoon period.......... 116
Figure 3.22: Showing pH level (stream water) at sampling sites during pre-monsoon and post-monsoon period................................. 117
Figure 3.23: Showing concentration of calcium (stream water) at sampling sites during pre-monsoon and post-monsoon period.......... 117
Figure 3.24: Showing concentration of magnesium (stream water) at sampling sites during pre-monsoon and post-monsoon period.. 117
Figure 3.25: Showing concentration of sodium (stream water) at sampling sites during pre-monsoon and post-monsoon period.......... 118
Figure 3.26: Showing concentration of potassium (stream water) at sampling sites during pre-monsoon and post-monsoon period.. 118
Figure 3.27: Showing concentration of bicarbonate (stream water) at sampling sites during pre-monsoon and post-monsoon period 118

Figure 3.28: Showing concentration of chloride (stream water) at sampling sites during pre-monsoon and post-monsoon period........... 119

Figure 3.29: Showing concentration of sulphate (stream water) at sampling sites during pre-monsoon and post-monsoon period........... 119

Figure 3.30: Showing concentration of phosphate (stream water) at sampling sites during pre-monsoon and post-monsoon period. 119

Figure 3.31: Showing concentration of nitrate (stream water) at sampling sites during pre-monsoon and post-monsoon period........... 120

Figure 3.32: Showing concentration of fluoride (stream water) at sampling sites during pre-monsoon and post-monsoon period........... 120

Figure 3.33: Showing level of dissolved oxygen (stream water) at sampling sites during pre-monsoon and post-monsoon period........... 120

Figure 3.34: Showing level of BOD (stream water) at sampling sites during pre-monsoon and post-monsoon period...................... 121

Figure 3.35: Showing COD level (stream water) at sampling sites during pre-monsoon and post-monsoon period....................... 121

Figure 3.36: Plot of sodium percent versus electrical conductance for rating irrigation water (surface) for pre-monsoon period (Wilcox diagram).. 138

Figure 3.37: Plot of sodium percent versus electrical conductance for rating irrigation water (surface) for pre-monsoon period (Wilcox diagram).. 139

Figure 3.38: US Salinity diagram for classification of irrigation water (surface) for pre-monsoon period... 140

Figure 3.39: US Salinity diagram for classification of irrigation water (surface) for post-monsoon period... 141

Figure 3.40: Classification of surface water for irrigation based on the permeability index for pre-monsoon season (Doneen’s plot).. 142

Figure 3.41: Classification of surface water for irrigation based on the permeability index for post-monsoon season (Doneen’s plot) 142

Figure 3.42: Distribution of the water samples according to Piper diagram
Figure 3.43: Distribution of the water samples according to Piper diagram for post-monsoon period.

Figure 4.1: Map showing groundwater sampling locations in study area.

Figure 4.2: Showing temperature variation (groundwater) at sampling sites during pre-monsoon and post-monsoon period.

Figure 4.3: Showing concentration of EC (groundwater) at sampling sites during pre-monsoon and post-monsoon period.

Figure 4.4: Showing concentration of TDS (groundwater) at sampling sites during pre-monsoon and post-monsoon period.

Figure 4.5: Showing concentration of pH (groundwater) at sampling sites during pre-monsoon and post-monsoon period.

Figure 4.6: Showing concentration of calcium (groundwater) at sampling sites during pre-monsoon and post-monsoon period.

Figure 4.7: Showing concentration of magnesium (groundwater) at sampling sites during pre-monsoon and post-monsoon period.

Figure 4.8: Showing concentration of sodium (groundwater) at sampling sites during pre-monsoon and post-monsoon period.

Figure 4.9: Showing concentration of potassium (groundwater) at sampling sites during pre-monsoon and post-monsoon period.

Figure 4.10: Showing concentration of bicarbonate (groundwater) at sampling sites during pre-monsoon and post-monsoon period.

Figure 4.11: Showing concentration of chloride (groundwater) at sampling sites during pre-monsoon and post-monsoon period.

Figure 4.12: Showing concentration of sulphate (groundwater) at sampling sites during pre-monsoon and post-monsoon period.

Figure 4.13: Showing concentration of phosphate (groundwater) at sampling sites during pre-monsoon and post-monsoon period.

Figure 4.14: Showing concentration of nitrate (groundwater) at sampling sites during pre-monsoon and post-monsoon period.
Figure 4.15: Showing concentration of fluoride (groundwater) at sampling sites during pre-monsoon and post-monsoon period

Figure 4.16: Plot of sodium percent versus electrical conductance for rating irrigation groundwater for pre-monsoon period (Wilcox diagram)

Figure 4.17: Plot of sodium percent versus electrical conductance for rating irrigation groundwater for post-monsoon period (Wilcox diagram)

Figure 4.18: US Salinity diagram for classification of groundwater for irrigation for pre-monsoon period

Figure 4.19: US Salinity diagram for classification of groundwater for irrigation for post-monsoon period

Figure 4.20: Classification of groundwater for irrigation based on the permeability index for pre-monsoon season (Doneen’s plot)

Figure 4.21: Classification of groundwater for irrigation based on the permeability index for post-monsoon season (Doneen’s plot)

Figure 4.22: Distribution of the groundwater samples according to Piper diagram for pre-monsoon period

Figure 4.23: Distribution of the groundwater samples according to Piper diagram for post-monsoon period

Figure 4.24: Map showing municipal water sampling locations in the study area

Figure 4.25: Showing temperature variation (municipal water) at sampling sites during pre-monsoon and post-monsoon period

Figure 4.26: Showing concentration of EC (municipal water) at sampling sites during pre-monsoon and post-monsoon period

Figure 4.27: Showing concentration of TDS (municipal water) at sampling sites during pre-monsoon and post-monsoon period

Figure 4.28: Showing concentration of pH (municipal water) at sampling sites during pre-monsoon and post-monsoon period

Figure 4.29: Showing concentration of calcium (municipal water) at sampling sites during pre-monsoon and post-monsoon period

Figure 4.30: Showing concentration of magnesium (municipal water) at sampling site during pre-monsoon and post-monsoon period
Figure 4.31: Showing concentration of sodium (municipal water) at sampling sites during pre-monsoon and post-monsoon period... 193
Figure 4.32: Showing concentration of potassium (municipal water) at sampling sites during pre-monsoon and post-monsoon period... 194
Figure 4.33: Showing concentration of bicarbonate (municipal water) at sampling sites during pre-monsoon and post-monsoon period... 194
Figure 4.34: Showing concentration of chloride (municipal water) at sampling sites during pre-monsoon and post-monsoon period... 194
Figure 4.35: Showing concentration of sulphate (municipal water) at sampling sites during pre-monsoon and post-monsoon period... 195
Figure 4.36: Showing concentration of phosphate (municipal water) at sampling sites during pre-monsoon and post-monsoon period... 195
Figure 4.37: Showing concentration of nitrate (municipal water) at sampling sites during pre-monsoon and post-monsoon period... 195
Figure 4.38: Showing concentration of fluoride (municipal water) at sampling sites during pre-monsoon and post-monsoon period... 196
Figure 4.39: Showing level of dissolved oxygen (municipal water) at sampling sites during pre-monsoon and post-monsoon period... 196
Figure 4.40: Showing BOD level (municipal water) at sampling sites during pre-monsoon and post-monsoon period................................. 196
Figure 4.41: Showing COD level (municipal water) at sampling sites during pre-monsoon and post-monsoon period................................. 197
Figure 5.1: Map showing sampling locations of soil samples......................... 204
Figure 5.2: Schematic diagram showing soil sampling locations (Dal lake) 205
Figure 5.3: Showing content of silica in lake samples................................. 216
Figure 5.4: Showing content of alumina in lake samples............................. 216
Figure 5.5: Showing content of calcium in lake samples.............................. 217
Figure 5.6: Showing content of magnesium in lake samples.......................... 217
Figure 5.7: Showing content of titanium in lake samples............................ 218
Figure 5.8: Showing content of phosphorus in lake samples.......................... 218
Figure 5.9: Showing content of iron in lake samples.................................. 219
Figure 5.10: Showing content of sodium in lake samples............................ 219
Figure 5.11: Showing content of potassium in lake samples........................ 220
Figure 5.12: Showing content of silica in soil samples of agricultural fields
Figure 5.13: Showing content of alumina in soil samples of agricultural fields
Figure 5.14: Showing content of calcium in soil samples of agricultural fields
Figure 5.15: Showing content of magnesium in soil samples of agricultural fields
Figure 5.16: Showing content of titanium in soil samples of agricultural fields
Figure 5.17: Showing content of phosphorus in soil samples of agricultural fields
Figure 5.18: Showing content of iron in soil samples of agricultural fields
Figure 5.19: Showing content of sodium in soil samples of agricultural fields
Figure 5.20: Showing content of potassium in soil samples of agricultural fields
Figure 5.21: Grain size of soil in Dal lake (Sample 1)
Figure 5.22: Grain size of soil in Dal lake (Sample 2)
Figure 5.23: Grain size of soil in Dal lake (Sample 3)
Figure 5.24: Grain size of soil in Dal lake (Sample 4)
Figure 5.25: Grain size of soil in Dal lake (Sample 5)
Figure 5.26: Grain size of soil sample of agricultural field along upstream Banoi
Figure 5.27: Grain size of soil sample of agricultural field along downstream Banoi
Figure 5.28: Grain size of soil sample of agricultural field along upstream Churan
Figure 5.29: Grain size of soil sample of agricultural field along downstream Churan
Figure 5.30: Grain size of soil sample of agricultural field along upstream Manjhi
Figure 5.31: Grain size of soil sample of agricultural field along downstream Manjhi
Figure 5.32: Grain size of soil sample of agricultural field along upstream Manuni................................. 269
Figure 5.33: Grain size of soil sample of agricultural field along downstream Manuni.............................. 270
Figure 5.34: Grain size of soil sample from municipal waste disposal site.. 270
Figure 6.1: Geological/Lithological map of the study area (modified after Bhardwaj, 1992 & Dhar, 2006)... 276
Figure 6.2: Geomorphological map of the study area... 281
Figure 6.3: Drainage Map of the study area... 284
Figure 6.4: Regression of logarithm of number of streams versus stream order.. 287
Figure 6.5: Regression of logarithm of stream lengths versus stream order... 287
Figure 6.6: Regression of logarithm of mean stream length versus stream order..................................... 288
Figure 6.7: Slope zone map of the study area... 290
Figure 6.8: Showing sliding of the land due to the construction on steep slope (a) McLeod Ganj (b) Cantt. road.. 292
Figure 6.9: Showing landslide at (a) Left bank of Churan stream (b) Bhagsu Nag... 293
Figure 6.10: Showing soil erosion at (a) Village Chola (b) Bhagsu Nag.. 294
Figure 6.11: Land-use / land-cover map of the year 1969.. 299
Figure 6.12: Land-use / land-cover map of the year 1969.. 300
Figure 6.13: Showing various categories of land-use/land-cover (LU/LC) of the study area (1969)................... 302
Figure 6.14: Showing various categories of land-use/land-cover (LU/LC) of the study area (2005)................... 302
Figure 6.15: Comparison of various land-use/land-cover categories for the year 1969 and 2005 in the study area.................... 303
Figure 6.16: Showing new construction at (a) McLeod Ganj (b) Bhagsu Nag road... 307
Figure 6.17: Showing commercial area on both sides of road (a) McLeod Ganj (b) Bhagsu Nag road................................. 308
Figure 6.18: Showing construction of new hotels and resorts in McLeod... 309
Figure 6.19: Showing transformation of green landscape into concrete jungle ... 309
Figure 6.20: Showing agricultural fields (a) Sadhed (b) Gharoh 310
Figure 6.21: Showing tea garden at (a) Dharamshala (b) Kand 311
Figure 6.22: Showing dense forest area with forest blank 312
Figure 6.23: Showing scrub forest in the study area 312
Figure 6.24: Showing land with scrub .. 313
Figure 6.25: Showing land without scrub 313
Figure 6.26: Showing mining area (a) Bhagsu Nag (b) Khaniara 314
Figure 6.27: Showing water bodies (a) Water fall (b) Stream (c) Dal lake 315
Figure 6.28: Showing other categories (a) Grazing land (b) Snow covered area .. 316
Figure 6.29: Map of the study area showing area under mining 318
Figure 6.30: Showing an age-old and outdated methodology of ‘pick and axe’ ... 320
Figure 6.31: Showing manual method of slate mining that generates huge amount of waste ... 320
Figure 6.32: Showing mine debris/slate waste degrading the green cover and thereby increasing gully erosion at (a) Bhagsu Nag (b) Khaniara ... 321
Figure 6.33: Showing mass movement of rock strata overlying the mining site ... 322
Figure 6.34: Showing villages below mining area 322
Figure 6.35: Showing mining burrow as one of the factor behind slope failure ... 323
Figure 6.36: Showing green cover around the mining site at Bhagsu Nag 323
Figure 6.37: Showing forest cover around mine lease area at Khaniara 324
Figure 6.38: Showing mining sites at steep slope 324
Figure 6.39: Showing view of degraded slope due to mining activities 325
Figure 6.40: Showing Dharamshala region falls in the highest zone V 327
Figure 6.41: Showing hazard zonation map of study area 329
Figure 7.1: Proposed layout for managing solid waste in the study area .. 357