CHAPTER 3

The Forcing Total Domination Number of a Graph

In this chapter we introduce the concept of the forcing total domination number \(f_{\gamma_t}(G) \) of a connected graph with at least 3 vertices and study some of its general properties. Connected graphs with forcing total domination number 0 or 1 are characterized. It is shown that, for every pair \(a, b \) of integers with \(0 \leq a \leq b \) and \(b > a + 1 \), there exists a connected graph \(G \) such that \(f_{\gamma_t}(G) = a \) and \(\gamma_t(G) = b \).

We have shown that, for any integer \(a \geq 0 \), there exists a connected graph \(G \) such that \(f_{\gamma_t}(G) = f_{\gamma}(G) = a \). We have shown that, for every pair \(a, b \) of integers with \(0 \leq a \leq b \), there exists a connected graph \(G \) such that \(f_{\gamma_t}(G) = a \) and \(f_{\gamma}(G) = b \).

Also it is proved that, for every pair \(a, b \) of integers with \(0 \leq a \leq b \), there exists a connected graph \(G \) such that \(f_{\gamma_t}(G) = b \) and \(f_{\gamma}(G) = a \). It is shown that, for any integer \(a \geq 4 \), there exists a connected graph \(G \) such that \(\gamma_t(G) = a \) and \(\gamma_t^+(G) = 2a - 4 \). Also it is proved that, for every pair of positive integers \(a, b \) with \(2 \leq a \leq b \), there exists a connected graph \(G \) such that \(f_{\gamma_t}(G) = a \), \(\gamma_t(G) = b + 3 \) and \(\gamma_t^+(G) = a + b + 2 \).

Even though every connected graph contains a minimum total dominating set, some connected graph may contain several minimum total dominating sets. For each

\(^2\) A part of this chapter has been published in the journal of *Crossian Resonance*, Vol.5 No.2 (2014) 143-146
minimum total dominating set S in a connected graph G, there is always some subset T of S that uniquely determines S as the minimum total dominating set containing T. Such “forcing subsets” will be considered in this section.

Definition 3.1

Let G be a connected graph and S a minimum total dominating set of G. A subset $T \subseteq S$ is called a *forcing subset* for S if S is the unique minimum total dominating set containing T. A forcing subset for S of minimum cardinality is a *minimum forcing subset* of S. The **forcing total domination number** of S, denoted by $f_{yt}(S)$, is the cardinality of a minimum forcing subset of S. The **forcing total domination number** of G, denoted by $f_{yt}(G)$ is defined by $f_{yt}(G) = \min \{f_{yt}(S)\}$, where the minimum is taken over all minimum total dominating sets S in G.

Example 3.2

For the graph G given in Figure 3.1, $S = \{v_4, v_5\}$ is the unique minimum total dominating set of G so that $f_{yt}(G) = 0$ and for the graph G given in Figure 3.2, $S_1 = \{v_1, v_5\}$, $S_2 = \{v_2, v_3\}$, $S_3 = \{v_2, v_5\}$, $S_4 = \{v_3, v_5\}$ and $S_5 = \{v_4, v_3\}$ are the only five minimum total dominating sets of G such that $f_{yt}(S_1) = f_{yt}(S_5) = 1$ and $f_{yt}(S_2) = f_{yt}(S_3) = f_{yt}(S_4) = 2$ so that $f_{yt}(G) = 1$.

![Figure 3.1]

G
The next theorem follows immediately from the definition of the total domination number and the forcing total domination number of a connected graph G.

Theorem 3.3

For every connected graph G, $0 \leq f_{\gamma_t}(G) \leq \gamma_t(G)$.

Remark 3.4

The bounds in Theorem 3.3 are sharp. For the graph G given in Figure 3.1, $f_{\gamma_t}(G) = 0$ and for the graph $G = C_4$, $f_{\gamma_t}(G) = \gamma_t(G) = 2$. Also, all the inequalities in the theorem are strict. For the graph G given in Figure 3.2, $f_{\gamma_t}(G) = 1$ and $\gamma_t(G) = 2$. Thus $0 < f_{\gamma_t}(G) < \gamma_t(G)$.

In the following, we characterize graphs G for which bounds in Theorem 3.3 attained and also graphs for which $f_{\gamma_t}(G) = 1$.

Theorem 3.5

Let G be a connected graph. Then

(a) $f_{\gamma_t}(G) = 0$ if and only if G has a unique minimum total dominating set.
(b) \(f_{\gamma_t}(G) = 1 \) if and only if \(G \) has at least two minimum total dominating sets, one of which is a unique minimum total dominating set containing one of its elements, and

(c) \(f_{\gamma_t}(G) = \gamma_t(G) \) if and only if no minimum total dominating set of \(G \) is the unique minimum total dominating set containing any of its proper subsets.

Proof

(a) Let \(f_{\gamma_t}(G) = 0 \). Then, by definition, \(f_{\gamma_t}(S) = 0 \) for some minimum total dominating set \(S \) of \(G \) so that the empty set \(\emptyset \) is the minimum forcing subset for \(S \). Since the empty set \(\emptyset \) is a subset of every set, it follows that \(S \) is the unique minimum total dominating set of \(G \). The converse is clear.

(b) Let \(f_{\gamma_t}(G) = 1 \). Then by Theorem 3.5(a), \(G \) has at least two minimum total dominating sets. Also, since \(f_{\gamma_t}(G) = 1 \), there is a singleton subset \(T \) of a minimum total dominating set \(S \) of \(G \) such that \(T \) is not a subset of any other minimum total dominating set of \(G \). Thus \(S \) is the unique minimum total dominating set containing one of its elements. The converse is clear.

(c) Let \(f_{\gamma_t}(G) = \gamma_t(G) \). Then \(f_{\gamma_t}(G) = \gamma_t(G) \) for every minimum total dominating set \(S \) in \(G \). Since \(m \geq 2 \), \(\gamma_t(G) \geq 2 \) and hence \(f_{\gamma_t}(G) \geq 2 \). Then by Theorem 3.5 (a), \(G \) has at least two minimum total dominating sets and so the empty set \(\emptyset \) is not a forcing subset for any minimum total dominating set of \(G \). Since \(f_{\gamma_t}(G) = \gamma_t(G) \), no proper subset of \(S \) is a forcing subset of \(S \). Thus no minimum total dominating set of \(G \) is the unique minimum total dominating set containing any of its proper subsets. Conversely, the data implies that \(G \) contains more than one minimum total dominating set and no
subset of any minimum total dominating sets S other than S is a forcing subset for S. Hence it follows that $f_{\gamma_t}(G) = \gamma_t(G)$.

Definition 3.6

A vertex v of a connected graph G is said to be a total dominating vertex of G if v belongs to every minimum total dominating set. If G has a unique minimum total dominating set S, then every vertex of S is a total dominating vertex of G.

Example 3.7

For the graph G given in Figure 3.3, $S_1 = \{v_1, v_2\}$ and $S_2 = \{v_4, v_2\}$ are the only two minimum total dominating sets of G. It is clear that v_2 belongs to every γ_t-set of G so that v_2 is a total dominating vertex.

![Figure 3.3](image)

Theorem 3.8

Let G be a connected graph and let \mathcal{F} be the set of relative complements of the minimum forcing subsets in their respective minimum total dominating sets in G. Then $\bigcap_{F \in \mathcal{F}} F$ is the set of total dominating vertices of G.

Proof

Let W be the set of all total dominating vertices of G. We will show that $W = \bigcap_{F \in \mathcal{F}} F$. Let $v \in W$. Then v is an total dominating vertex of G that belongs to
every minimum total dominating set S of G. Let $T \subseteq S$ be any minimum forcing subset for any minimum total dominating set S of G. We claim that $v \notin T$. If $v \in T$, then $T' = T - \{v\}$ is a proper subset of T such that S is the unique minimum total dominating set containing T' so that T' is a forcing subset for S with $|T'| < |T|$, which is a contradiction to T is a minimum forcing subset for S. Thus $v \notin T$ and so $v \in F$, where F is the relative complement of T in S. Hence $v \in \bigcap_{F \subseteq G} F$ so that $W \subseteq \bigcap_{F \subseteq G} F$.

Conversely, let $v \in \bigcap_{F \subseteq G} F$. Then v belongs to the relative complement of T in S for every T and every S such that $T \subseteq S$, where T is a minimum forcing subset for S. Since F is the relative complement of T in S, we have $F \subseteq S$ and thus $v \in S$ for every S, which implies that v is a total dominating vertex of G. Thus $v \in W$ and so $\bigcap_{F \subseteq G} F \subseteq W$. Hence $W = \bigcap_{F \subseteq G} F$. ■

Corollary 3.9

Let G be a connected graph and S a minimum total dominating set of G. Then no total dominating vertex of G belongs to any minimum forcing subset of S.

Proof

The proof is contained in the proof of the first part of Theorem 3.8. ■

Theorem 3.10

Let G be a connected graph and W be the set of all total dominating vertices of G. Then $f_{\gamma_t}(G) \leq \gamma_t(G) - |W|$.

48
Proof
Let S be any γ_t-set of G. Then S is the unique γ_t-set containing $S - W$, so that
\[f_{\gamma_t}(G) \leq |S - W| \leq \gamma_t(G) - |W|. \]

Remark 3.11
The bound in Theorem 3.10 is sharp. For the graph G given in Figure 3.3, $\gamma_t(G) = 2$, $|W| = 1$ and $f_{\gamma_t}(G) = 1$ so that $f_{\gamma_t}(G) = \gamma_t(G) - |W|$. Also the bound in Theorem 3.10 is strict. For the graph G given in Figure 3.4, $\gamma_t(G) = 4$, $|W| = 1$, $f_{\gamma_t}(G) = 2$ and $\gamma_t(G) - |W| = 3$ so that $f_{\gamma_t}(G) < \gamma_t(G) - |W|$.

In the following we determine the forcing total domination number of some standard graphs.

Theorem 3.12
For any path $P_n(n \geq 3)$, $f_{\gamma_t}(P_n) = \begin{cases}
1 & \text{if } n \text{ is odd and } n \neq 5 \\
0 & \text{if } n \equiv 0 \pmod{4} \\
2 & \text{if } n \equiv 2 \pmod{4}
\end{cases}$

Proof
Let $V(P_n)$ be $\{v_1, v_2, ..., v_n\}$.

\[G \]

Figure 3.4
Chapter 3
The forcing total domination number of a graph

Case 1. \(n \) is odd.

Subcase i. Let \(n = 5 \). Then \(S = \{v_2, v_3, v_4\} \) is the unique \(\gamma_t \)-set of \(G \), so that
\[f_{\gamma_t}(P_n) = 0. \]

Subcase ii. Let \(n \neq 5 \) and \(n = 2m + 1 \). Then \(S = \{v_1, v_2, v_5, v_6, v_9, v_{10}, \ldots, v_{2m-1}, v_{2m}\} \) is the unique \(\gamma_t \)-set of \(G \) containing \(v_1 \), so that \(f_{\gamma_t}(P_n) = 1. \)

Case 2. \(n \) is even.

Subcase i. Let \(n \equiv 0 \pmod{4} \)

Let \(n = 4m \). Then \(S_1 = \{v_2, v_3, v_6, v_7, v_{10}, v_{11}, \ldots, v_{4m-2}, v_{4m-1}\} \) is the unique minimum total dominating set of \(G \), so that \(f_{\gamma_t}(P_n) = 0. \)

Subcase ii. Let \(n \equiv 2 \pmod{4}. \)

Let \(n = 4m + 2 \) and \(m \geq 2 \). Let \(S \) be any \(\gamma_t \)-set of \(G \). Then it is easily verified that any singleton subset of \(S \) is a subset of another \(\gamma_t \)-set of \(G \) and so \(f_{\gamma_t}(P_n) \geq 1. \)

Now \(S_1 = \{v_1, v_2, v_5, v_6, v_9, \ldots, v_{4m}, v_{4m+1}\} \) is a \(\gamma_t \)-set of \(G \). \(S_1 \) is the unique \(\gamma_t \)-set of \(G \) containing \(\{v_1, v_{4m+1}\} \) so that \(f_{\gamma_t}(P_n) = 2. \)

Let \(n = 4m + 2 \) and \(m = 1 \). Now \(S_1 = \{v_1, v_2, v_5, v_6\}, S_2 = \{v_1, v_2, v_4, v_5\}, S_3 = \{v_2, v_3, v_4, v_5\} \) and \(S_4 = \{v_2, v_3, v_5, v_6\} \) are the only four \(\gamma_t \)-sets of \(G \) such that \(f_{\gamma_t}(S_1) = 2, f_{\gamma_t}(S_2) = 2, f_{\gamma_t}(S_3) = 2, f_{\gamma_t}(S_4) = 2 \) so that \(f_{\gamma_t}(P_n) = 2. \)

Theorem 3.13

For the complete graph \(G = K_n, f_{\gamma_t}(G) = 2. \)
Proof

Let \(V(K_n) \) be \(\{v_1, v_2, \ldots, v_n\} \). Then \(S_{ij} = \{v_i, v_j\}, 1 \leq i \neq j \leq n \) is a \(\gamma_t \)-set of \(G \) and so \(\gamma_t(G) = 2 \). It is easily verified that any singleton subset of \(S_{ij} \) is not a forcing subset of \(S_{ij} \) and so \(f_{\gamma_t}(G) \geq 2 \). Then by Theorem 3.3, \(f_{\gamma_t}(G) = 2 \).

Theorem 3.14

For the complete bipartite graph \(G = K_{m,n} \), \(f_{\gamma_t}(G) = \begin{cases} 1 & \text{for } m = 1; n \geq 2 \\ 2 & \text{for } 1 < m \leq n \end{cases} \)

Proof

Let \(U = \{u_1, u_2, \ldots, u_m\} \) and \(V = \{v_1, v_2, \ldots, v_n\} \) be the bipartite sets of \(G \).

Case 1. Let \(m = 1 \) and \(n \geq 2 \). Then \(S_j = \{u_1, v_j\}, 1 \leq j \leq n \) is a \(\gamma_t \)-set of \(G \). Now \(S_j, 1 \leq j \leq n \) is the unique \(\gamma_t \)-set of \(G \) containing \(\{v_j\} \) \((1 \leq j \leq n)\) so that \(f_{\gamma_t}(G) = 1 \).

Case 2. Let \(1 < m \leq n \). Then \(S_{ij} = \{u_i, v_j\} \) \((1 < i < m, 1 < j < n)\) is a \(\gamma_t \)-set of \(G \) and so \(\gamma_t(G) = 2 \). It is easily verified that any singleton subset of \(S_{ij} \) is not a forcing subset of \(S_{ij} \) and so \(f_{\gamma_t}(G) \geq 2 \). Then by Theorem 3.3, \(f_{\gamma_t}(G) = 2 \).

Theorem 3.15

For any cycle \(C_n \) \((n \geq 3)\), \(f_{\gamma_t}(C_n) = \begin{cases} 2 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \equiv 0 \text{(mod 4)} \\ 4 & \text{if } n \equiv 2 \text{(mod 4)} \end{cases} \)
Chapter 3

The forcing total domination number of a graph

Proof

Case 1. If \(n \) is odd and let \(n = 2m + 1 \). Let \(C_n: v_1, v_2, v_3, \ldots, v_{2m+1}, v_1 \) be the cycle of order \(2m + 1 \). Let \(S \) be any \(y_t \)-set of \(G \). Then it is easily verified that any singleton subset of \(S \) is a subset of another \(y_t \)-set of \(G \) and so \(f_{y_t}(C_n) \geq 1 \).

Subcase i. \(n + 1 \equiv 0 \mod 4 \). Let \(n = 4k - 1, k \geq 1 \). Then \(S = \{v_1, v_2, v_5, v_6, v_9, v_{10}, \ldots, v_{4k-3}, v_{4k-2}\} \) is the unique \(y_t \)-set of \(G \) containing \(\{v_{10}, v_1\} \) so that \(f_{y_t}(C_n) = 2 \).

Subcase ii. \(n - 1 \equiv 0 \mod 4 \). Let \(n = 4k + 1, k \geq 1 \). Then \(S = \{v_1, v_2, v_5, v_6, v_9, v_{10}, \ldots, v_{4k-3}, v_{4k-2}, v_{4k+1}\} \) is the unique \(y_t \)-set of \(G \) containing \(\{v_2, v_{4k+1}\} \) so that \(f_{y_t}(C_n) = 2 \).

Case 1. \(n \) is even.

Subcase i. Let \(n \equiv 0 \mod 4 \). Let \(n = 4k, k \geq 1 \). Then \(S = \{v_1, v_2, v_5, v_6, v_9, v_{10}, \ldots, v_{4k-3}, v_{4k-2}\} \) is the unique minimum total dominating set of \(G \) containing \(\{v_1, v_2\}, \{v_5, v_6\}, \ldots, \{v_{4k-3}, v_{4k-2}\} \) so that \(f_{y_t}(C_n) = 2 \).

Subcase ii. Let \(n \equiv 2 \mod 4 \). Let \(n = 4k + 2, k \geq 1 \). Let \(S \) be any \(y_t \)-set of \(G \). Then it is easily verified that any one element or two element or three element subset of \(S \) is a subset of another \(y_t \)-set of \(G \) and so \(f_{y_t}(C_n) \geq 4 \). Now \(S_1 = \{v_1, v_2, v_5, v_6, v_9, v_{10}, \ldots, v_{4k+1}, v_{4k+2}\} \) is a \(y_t \)-set of \(G \). It is easily seen that \(S_1 \) is the unique \(y_t \)-set of \(G \) containing \(\{v_1, v_2, v_{4k+1}, v_{4k+2}\} \) so that \(f_{y_t}(C_n) = 4 \).

In view of Theorem 3.3, we have the following realization result.
Theorem 3.16

For every pair \(a, b \) of integers with \(0 \leq a < b \) and \(b > a + 1 \), there exists a connected graph \(G \) such that \(f_{\gamma_t}(G) = a \) and \(\gamma_t(G) = b \).

Proof

Let \(P_i: u_i, v_i, w_i \) \((1 \leq i \leq a)\) be a path of order 3 and \(P_i': x_i, y_i \) \((1 \leq i \leq b - a - 1)\) be a path of order 2. Let \(G \) be a graph obtained from \(P_i \) \((1 \leq i \leq a)\) and \(P_i' \) \((1 \leq i \leq b - a - 1)\) by adding new vertex \(x \) and join \(x \) with each \(u_i \) \((1 \leq i \leq a)\) and each \(w_i \) \((1 \leq i \leq a)\) and also join \(x \) with each \(x_i \) \((1 \leq i \leq b - a - 1)\). The graph \(G \) is shown in Figure 3.5.

First we claim that \(\gamma_t(G) = b \). Let \(H_i = \{u_i, w_i\} \) \((1 \leq i \leq a)\). Let \(X = \{x, x_1, x_2, ..., x_{b-a-1}\} \). It is easily observed that \(X \) is a subset of every total dominating set of \(G \) and so \(\gamma_t(G) \geq b - a - 1 + 1 = b - a \). Also it is easily seen
that every total dominating set of G contains at least one element of H_i $(1 \leq i \leq a)$ and so $\gamma_t(G) \geq b - a + a = b$. Now $S = X \cup \{u_1, u_2, \ldots, u_a\}$ is a total dominating set of G so that $\gamma_t(G) = b$.

Next we show that $f_{\gamma_t}(G) = a$. By Theorem 3.10, $f_{\gamma_t}(G) \leq \gamma_t(G) - |X| = b - (b - a) = a$. Now since $\gamma_t(G) = b$ and every total dominating set of G contains X, it is easily seen that every γ_t-set of G is of the form $S = X \cup \{c_1, c_2, \ldots, c_a\}$, where $c_i \in H_i$ $(1 \leq i \leq a)$. Let T be any proper subset of S with $|T| < a$. Then there exist a vertex c_j $(1 \leq j \leq a)$ such that $c_j \notin T$. Let d_j be a vertex of H_j distinct from c_j. Then $S_1 = \left((S - \{c_j\}) \cup \{d_j\}\right)$ is a γ_t-set of G properly containing T. Therefore T is not a forcing subset of S. This is true for all γ_t-sets of G. Hence it follows that $f_{\gamma_t}(G) = a$.

In the following the forcing domination number and the forcing total domination number of a graph G are related.

Theorem 3.17

For any integer $a \geq 0$, there exists a connected graph G such that $f_{\gamma_t}(G) = f_{\gamma}(G) = a$.

Proof

Let $P_i: u_i, v_i, w_i, x_i$ $(1 \leq i \leq a)$ be a path of order 4. Let G be a graph obtained from P_i $(1 \leq i \leq a)$ by adding new vertex x and joining x with each u_i $(1 \leq i \leq a)$, v_i $(1 \leq i \leq a)$ and each x_i $(1 \leq i \leq a)$. The graph G is shown in Figure 3.6.
First we show that $\gamma(G) = a + 1$. Let $H_i = \{v_i, w_i, x_i\}$ $(1 \leq i \leq a)$. It is easily observed that x belongs to every minimum dominating set of G and so $\gamma(G) \geq 1$. Also it is easily seen that every dominating set of G contains at least one element of H_i $(1 \leq i \leq a)$ and so $\gamma(G) \geq a + 1$. Now $S = \{x\} \cup \{v_1, v_2, ..., v_a\}$ is a dominating set of G so that $\gamma(G) = a + 1$.

Next we show that $f_{\gamma}(G) = a$. By Theorem 1.51, $f_{\gamma}(G) \leq \gamma(G) - \{x\} = a + 1 - 1 = a$. Now since $\gamma(G) = a + 1$ and every dominating set of G contains $\{x\}$, it is easily seen that every γ-set of G is of the form $S_1 = \{x\} \cup \{c_1, c_2, ..., c_a\}$, where $c_i \in H_i$ $(1 \leq i \leq a)$. Let T be any proper subset of S_1 with $|T| < a$. Then there exist a vertex c_j $(1 \leq j \leq a)$ such that $c_j \notin T$. Let d_j be a vertex of H_j distinct from c_j. Then $S_2 = \{(S_1 - \{c_j\}) \cup \{d_j\}\}$ is a γ-set of G properly containing T. Therefore T is not a forcing subset of S. This is true for all γ-sets of G. Hence it follows that $f_{\gamma}(G) = a$.

Next we claim that $\gamma_t(G) = a + 1$. Let $G_t = \{v_i, x_i\}$ $(1 \leq i \leq a)$. It is easily seen that every total dominating set of G contains $\{x\}$ and at least one element of G.
Chapter 3
The forcing total domination number of a graph

\(G_i (1 \leq i \leq a) \) and so \(\gamma_t(G) \geq a + 1 \). Now \(S = \{x\} \cup \{v_1, v_2, ..., v_a\} \) is a total dominating set of \(G \) so that \(\gamma_t(G) = a + 1 \).

Next we show that \(f_{\gamma_t}(G) = a \). By Theorem 3.10, \(f_{\gamma_t}(G) \leq \gamma_t(G) - \{x\} = a + 1 - 1 = a \). Now since \(\gamma_t(G) = a + 1 \) and every total dominating set of \(G \) contains \(\{x\} \) and at least one element of \(G_i (1 \leq i \leq a) \), it is easily seen that every \(\gamma_t \)-set of \(G \) is of the form \(S = \{x\} \cup \{c_1, c_2, ..., c_a\} \) where \(c_i \in G_i (1 \leq i \leq a) \). Let \(T \) be any proper subset of \(S \) with \(|T| < a \). Then there exist a vertex \(c_j (1 \leq j \leq a) \) such that \(c_j \notin T \). Let \(d_j \) be a vertex of \(G_j (1 \leq j \leq a) \) distinct from \(c_j \). Then \(S_1 = \{(S - \{c_j\}) \cup \{d_j\}\} \) is a \(\gamma_t \)-set of \(G \) properly containing \(T \). Therefore \(T \) is not a forcing subset of \(S \). This is true for all \(\gamma_t \)-sets of \(G \). Hence it follows that \(f_{\gamma_t}(G) = a \). \(\blacksquare \)

Theorem 3.18

For every pair \(a, b \) of integers with \(0 \leq a < b \), there exists a connected graph \(G \) such that \(f_{\gamma_t}(G) = a \) and \(f_{\gamma}(G) = b \).

Proof

Let \(P_i; u_i, v_i, w_i, x_i (1 \leq i \leq a) \) be a path of order 4 and \(P_i'; q_i, r_i (1 \leq i \leq b - a) \) be a path of order 2. Let \(G \) be a graph obtained from \(P_i (1 \leq i \leq a) \) and \(P_i' (1 \leq i \leq b - a) \) by adding a new vertex \(x \) and joining \(x \) with each \(u_i (1 \leq i \leq a) \), \(v_i (1 \leq i \leq a) \) and each \(x_i (1 \leq i \leq a) \) and also join \(x \) with each \(q_i (1 \leq i \leq b - a) \). The graph \(G \) is shown in Figure 3.7.
First we show that \(\gamma(G) = b + 1 \). Let \(H_i = \{v_i, w_i, x_i\} \) (1 ≤ i ≤ a) and \(G_i = \{q_i, r_i\} \) (1 ≤ i ≤ b - a). It is easily observed that \(\{x\} \) belongs to every dominating set of \(G \) and so \(\gamma(G) ≥ 1 \). Also it is easily seen that every dominating set of \(G \) contains at least one element of \(H_i \) (1 ≤ i ≤ a) and one element of \(G_i \) (1 ≤ i ≤ b - a) and so \(\gamma(G) ≥ b - a + a + 1 = b + 1 \). Now \(S = \{x\} \cup \{v_1, v_2, \ldots, v_a\} \cup \{q_1, q_2, \ldots, q_{b-a}\} \) is a dominating set of \(G \) so that \(\gamma(G) = b + 1 \).

Next we show that \(f_\gamma(G) = b \). By Theorem 1.51, \(f_\gamma(G) ≤ \gamma(G) - \{x\} = b + 1 - 1 = b \). Now since \(\gamma(G) = b + 1 \) and every dominating set of \(G \) contains \(\{x\} \), it is easily seen that every \(\gamma \)-set of \(G \) is of the form \(S_1 = \{x\} \cup \{c_1, c_2, \ldots, c_a\} \cup \{h_1, h_2, \ldots, h_{b-a}\} \), where \(c_i \in H_i \) (1 ≤ i ≤ a) and \(h_i \in G_i \) (1 ≤ i ≤ b - a). Let \(T \) be any proper subset of \(S_1 \) with \(|T| < b \). Then it is clear that there exist some \(i \) and \(j \) such that \(T \cap H_i \cap G_j = \emptyset \), which shows that \(f_\gamma(G) = b \).
Next we show that $\gamma_t(G) = b + 1$. Let $Z_i = \{v_i, x_i\}$ ($1 \leq i \leq a$). Let $X = \{x, q_1, q_2, \ldots, q_{b-a}\}$. It is easily observed that X is a subset of every total dominating set of G and so $\gamma_t(G) \geq b - a + 1$. Also it is easily seen that every total dominating set of G contains at least one element of Z_i ($1 \leq i \leq a$) and so $\gamma_t(G) \geq b - a + 1 + a = b + 1$. Now $S = X \cup \{v_1, v_2, \ldots, v_a\}$ is a total dominating set of G so that $\gamma_t(G) = b + 1$.

Next we show that $f_{\gamma_t}(G) = a$. By Theorem 3.10, $f_{\gamma_t}(G) \leq \gamma_t(G) - |X| = b + 1 - (b - a + 1) = a$. Now since $\gamma_t(G) = b + 1$ and every total dominating set of G contains X, it is easily seen that every γ_t-set of G is of the form $S = X \cup \{c_1, c_2, \ldots, c_a\}$, where $c_i \in Z_i$ ($1 \leq i \leq a$). Let T be any proper subset of S with $|T| < a$. Then there exist a vertex c_j ($1 \leq j \leq a$) such that $c_j \notin T$. Let d_j be a vertex of Z_i distinct from c_j. Then $S_1 = \{S - \{c_j\} \cup \{d_j\}\}$ is a γ_t-set of G properly containing T. Therefore T is not a forcing subset of S. This is true for all γ_t-sets of G. Hence it follows that $f_{\gamma_t}(G) = a$.

Theorem 3.19

For every pair a, b of integers with $0 \leq a < b$, there exists a connected graph G such that $f_{\gamma_t}(G) = b$ and $f_{\gamma_t}(G) = a$.

Proof

Let $P_i: v_i, w_i, x_i, y_i$ ($1 \leq i \leq a$) be a path of order 4. Let H be a graph obtained from P_i ($1 \leq i \leq a$) by adding two vertices x and y and join x with each v_i ($1 \leq i \leq a$) and each w_i ($1 \leq i \leq a$) and each y_i ($1 \leq i \leq a$) and join x with y. Let $C_i: p_i, q_i, r_i, s_i, t_i, u_i, p_i$ ($1 \leq i \leq b - a$) be a copy of cycle with six vertices. Let H'
be a graph obtained from C_i ($1 \leq i \leq b - a$) by identifying s_{i-1} with P_i ($1 \leq i \leq b - a$). Let G be a graph obtained from H and H' by joining y with p_1. The graph G is shown in Figure 3.8.

First we claim that $\gamma(G) = b + 2$. Let $H_i = \{w_i, x_i, y_i\}$ ($1 \leq i \leq a$). Let $X = \{x, p_1, s_1, s_2, \ldots, s_{b-a}\}$. It is easily observed that X is a subset of every minimum dominating set of G and so $\gamma(G) \geq b - a + 2$. Also it is easily seen that every
dominating set of G contains at least one element of $H_i(1 \leq i \leq a)$ and so $\gamma(G) \geq b - a + 2 + a = b + 2$. Now $S = X \cup \{w_1, w_2, ..., w_a\}$ is a dominating set of G so that $\gamma(G) = b + 2$.

Next we show that $f_\gamma(G) = a$. By Theorem 1.51, $f_\gamma(G) \leq \gamma(G) - |X| = b + 2 - (b - a + 2) = a$. Now since $\gamma(G) = b + 2$ and every dominating set of G contains X, it is easily seen that every γ-set of G is of the form $S_1 = X \cup \{c_1, c_2, ..., c_a\}$, where $c_i \in H_i(1 \leq i \leq a)$. Let T be any proper subset of S_1 with $|T| < a$. Then there exists a vertex $c_j (1 \leq j \leq a)$ such that $c_j \notin T$. Let d_j be a vertex of H_j distinct from c_j. Then $S_2 = \left((S_1 - \{c_j\}) \cup \{d_j\}\right)$ is a γ-set of G properly containing T. Therefore T is not a forcing subset of S. This is true for all γ-sets of G. Hence it follows that $f_\gamma(G) = a$.

Next we claim that $\gamma_t(G) = 2b - a + 2$. Let $H_i = \{w_i, y_i\} (1 \leq i \leq a)$ and $H'_i = \{q_i, u_i\} (1 \leq i \leq b - a)$. Let $X = \{x, p_1, s_1, s_2, ..., s_{b-a}\}$. It is easily observed that X is a subset of every total dominating set of G and so $\gamma_t(G) \geq b - a + 2$. Also it is easily seen that every total dominating set of G contains at least one element of $H_i(1 \leq i \leq a)$ and $H'_i (1 \leq i \leq b - a)$ and so $\gamma_t(G) \geq b - a + 2 + a + b - a = 2b - a + 2$. Now $S = X \cup \{w_1, w_2, ..., w_a\} \cup \{q_1, q_2, ..., q_{b-a}\}$ is a total dominating set of G so that $\gamma_t(G) = 2b - a + 2$.

Next we show that $f_{\gamma_t}(G) = b$. By Theorem 3.10, $f_{\gamma_t}(G) \leq \gamma_t(G) - |X| = 2b - a + 2 - (b - a + 2) = b$. Now since $\gamma_t(G) = 2b - a + 2$ and every total dominating set of G contains X, it is easily seen that every γ_t-set of G is of the form $S = X \cup \{c_1, c_2, ..., c_a\} \cup \{d_1, d_2, ..., d_{b-a}\}$, where $c_i \in H_i(1 \leq i \leq a)$ and $d_i \in$
$H_i'(1 \leq i \leq b - a)$. Let T be any proper subset of S with $|T| < b$. Then it is clear that there exists some i and j such that $T \cap H_i \cap H_i' = \emptyset$, which shows that $f_{\gamma_t}(G) = b$.

Open Problem 1

For every four positive integers a, b, c, d with $2 \leq a \leq b$, $c \geq 0$ and $d \geq 0$, does there exists a connected graph G with $\gamma(G) = a$, $\gamma_t(G) = b$, $f_\gamma(G) = c$ and $f_{\gamma_t}(G) = d$?

The Forcing Total and the Upper Total Domination Numbers of a Graph

The upper total domination number was studied in [13, 30]. We know that $0 \leq f_{\gamma_t}(G) \leq \gamma_t(G) \leq \gamma_t^+(G)$. In this section, we present some realization results.

Theorem 3.20

For any integer $a \geq 4$, there exists a connected graph G such that $\gamma_t(G) = a$ and $\gamma_t^+(G) = 2a - 4$.

Proof

Let $P_i: x_i, y_i (1 \leq i \leq a - 3)$ be a path of order 2. Let $C_5: v_1, v_2, v_3, v_5, v_1$. Let G be a graph obtained from $P_i (1 \leq i \leq a - 3)$ and C_5 by joining v_1 with each $x_i (1 \leq i \leq a - 3)$. The graph G is shown in Figure 3.9.
First we claim that $\gamma_t(G) = a$. Let $X = \{v_1, x_1, x_2, \ldots, x_{a-3}\}$. It is easily observed that X is a subset of every minimum total dominating set of G and so $\gamma_t(G) \geq a - 3 + 1 = a - 2$. It is easily verified that $X \cup \{x, x \notin X\}$ is not a total dominating set of G and so $\gamma_t(G) \geq a$. Now $S_1 = X \cup \{v_2, v_3\}$, $S_2 = X \cup \{v_3, v_4\}$ and $S_3 = X \cup \{v_4, v_5\}$, are the total dominating sets of G so that $\gamma_t(G) = a$.

Next we show that $\gamma_t^+(G) = 2a - 4$. Now $D = \{x_1, x_2, \ldots, x_{a-3}, y_1, y_2, \ldots, y_{a-3}, v_3, v_4\}$ is a total dominating set of G. We show that D is a minimal total dominating set of G. Let D' be any proper subset of D. Then there exists at least one vertex say $v \in D$ such that $v \notin D'$. Suppose that $v = x_i$ for some i ($1 \leq i \leq a - 3$). Then the vertex y_i ($1 \leq i \leq a - 3$) will be isolate in $\langle D' \rangle$. Therefore D' is not a total dominating set of G. Now, assume that $v = y_i$ for some i ($1 \leq i \leq a - 3$). Then the vertex x_i ($1 \leq i \leq a - 3$) will be isolate in $\langle D' \rangle$ and so D' is not a total dominating set of G. Now, assume that $v = v_3$ or v_4. Then the vertex v_4 or v_3 will be isolate in $\langle D' \rangle$ and so D' is not a total dominating set of G. Therefore any proper subset of D is not a total dominating set of G. Hence D is a minimal total dominating set of G and
so \(\gamma_t^+(G) \geq 2a - 4 \). We show that \(\gamma_t^+(G) = 2a - 4 \). Suppose that there exists a minimal total dominating set \(T \) of \(G \) such that \(|T| \geq 2a - 3 \). Then \(|T| \) is either \(2a - 3 \) or \(2a - 2 \). Let \(|T| = 2a - 3 \). Suppose that \(v_1 \notin T \). Since \((T) \) has no isolated vertex, \(x_i, y_i \in T \) for every \(i \) \((1 \leq i \leq a - 3)\). Let \(S' = \{x_1, x_2, \ldots, x_{a-3}, y_1, y_2, \ldots, y_{a-3}\} \). Since \(S_1 = S' \cup \{v_2, v_3\} \), \(S_2 = S' \cup \{v_3, v_4\} \) and \(S_3 = S' \cup \{v_4, v_5\} \) are total dominating sets of \(G \) and since \(S' \subseteq T \), it follows that \(T \) contains either \(S_1, S_2 \) or \(S_3 \) and so \(T \) is not a minimal total dominating set of \(G \), which is a contradiction. Suppose that \(v_1 \in T \). Then \(T \) consists of \(M = \{x_1, x_2, \ldots, x_{a-3}\} \). Since \(M_1 = M \cup \{v_1, v_2\} \), \(M_2 = M \cup \{v_1, v_5, v_4\} \) and \(M_3 = M \cup \{v_1, v_3, v_4\} \) are total dominating sets of \(G \), it follows that \(T \) contains any one of \(M_1, M_2, M_3 \) which is a contradiction to \(T \) is a minimal total dominating set of \(G \). Therefore \(\gamma_t^+(G) \neq 2a - 3 \).

By the similar way we can prove \(\gamma_t^+(G) \neq 2a - 2 \). Thus \(\gamma_t^+(G) = 2a - 4 \).

Theorem 3.21

For every pair of positive integers \(a, b \) with \(2 \leq a \leq b \), there exists a connected graph \(G \) such that \(f_{\gamma_t}(G) = a \), \(\gamma_t(G) = b + 3 \) and \(\gamma_t^+(G) = a + b + 2 \).

Proof

Let \(P_i : u_i, v_i \) \((1 \leq i \leq b - a)\) be a path of order 2 and \(Q_i : x_i, y_i, z_i \) \((1 \leq i \leq a)\) be a path of order 3. Let \(G \) be a graph obtained from \(P_i \) \((1 \leq i \leq b - a)\) and \(Q_i \) \((1 \leq i \leq a)\) by adding four vertices \(x, y, z \) and \(w \) and join \(x \) with each \(v_i \) \((1 \leq i \leq b - a)\) and \(x_i \) \((1 \leq i \leq a)\) and join \(y \) with each \(z_i \) \((1 \leq i \leq a)\) and \(z \) and also join \(z \) with \(w \). The graph \(G \) is shown in Figure 3.10.
Chapter 3

The forcing total domination number of a graph

First we claim that $\gamma_t(G) = b + 3$. Let $X = \{x, y, z, v_1, v_2, \ldots, v_{b-a}\}$ and $H_i = \{x_i, z_i\} (1 \leq i \leq a)$. It is easily observed that X is a subset of every minimum total dominating set of G and so $\gamma_t(G) \geq b - a + 3$. Also it is easily seen that every total dominating set of G contains at least one element of $H_i (1 \leq i \leq a)$ and so $\gamma_t(G) \geq b - a + 3 + a = b + 3$. Now $S = X \cup \{x_1, x_2, \ldots, x_a\}$ is a total dominating set of G so that $\gamma_t(G) = b + 3$.

Next we show that $f_{\gamma_t}(G) = a$. By Theorem 3.10, $f_{\gamma_t}(G) \leq \gamma_t(G) - |X| = b + 3 - (b - a + 3) = a$. Now since $\gamma_t(G) = b + 3$ and every total dominating set of G contains X, it is easily seen that every γ_t-set of G is of the form $S = X \cup \{c_1, c_2, \ldots, c_a\}$, where $c_i \in H_i (1 \leq i \leq a)$. Let T be any proper subset of S with $|T| < a$. Then there exist a vertex $c_j (1 \leq j \leq a)$ such that $c_j \notin T$. Let d_j be a vertex of H_j distinct from c_j. Then $S_1 = \left((S - \{c_j\}) \cup \{d_j\} \right)$ is a γ_t-set of G properly containing T. Therefore T is not a forcing subset of S. This is true for all γ_t-sets of G. Hence it follows that $f_{\gamma_t}(G) = a$.

Next we show that $\gamma_t^+(G) = a + b + 2$. Now $D = \{u_1, u_2, \ldots, u_{b-a}, v_1, v_2, \ldots, v_{b-a}, y_1, y_2, \ldots, y_a, z_1, z_2, \ldots, z_a, z, w\}$ is a total dominating set of G. We show that D is a minimal total dominating set of G. Let D' be any proper subset of D. Then
there exists at least one vertex say \(v \in D \) such that \(v \notin D' \). Suppose that \(v = u_i \) for some \(i \) (\(1 \leq i \leq b-a \)). Then the vertex \(v_i \) (\(1 \leq i \leq b-a \)) will be isolate in \(\langle D' \rangle \).

Therefore \(D' \) is not a total dominating set of \(G \). Now, assume that \(v = v_i \) for some \(i \) (\(1 \leq i \leq b-a \)). Then the vertex \(u_i \) (\(1 \leq i \leq b-a \)) will be isolate in \(\langle D' \rangle \) and so \(D' \) is not a total dominating set of \(G \). Now, assume that \(v = z \) or \(w \). Then the vertex \(w \) or \(z \) will be isolate in \(\langle D' \rangle \) and so \(D' \) is not a total dominating set of \(G \). Suppose that \(v = y_i \) for some \(i \) (\(1 \leq i \leq a \)). Then the vertex \(z_i \) (\(1 \leq i \leq a \)) will be isolate in \(\langle D' \rangle \). Therefore \(D' \) is not a total dominating set of \(G \). Now, assume that \(v = z_i \) for some \(i \) (\(1 \leq i \leq a \)). Then the vertex \(y_i \) (\(1 \leq i \leq b-a \)) will be isolate in \(\langle D' \rangle \) and so \(D' \) is not a total dominating set of \(G \). Therefore any proper subset of \(D \) is not a total dominating set of \(G \). Hence \(D \) is a minimal total dominating set of \(G \) and so \(\gamma_t^+(G) \geq a + b + 2 \). We show that \(\gamma_t^+(G) = a + b + 2 \). Suppose that there exists a minimal total dominating set \(T \) of \(G \) such that \(|T| \geq a + b + 3 \). Since \(D \) is a minimal total dominating set, there exists \(v \in T \) such that \(v \in D \). Then \(v \) is either \(x \) or \(y \) or \(x_i \) for some \(i \), (\(1 \leq i \leq a \)). By a similar argument, we can prove \(T - \{v\} \) is a total dominating set of \(G \), which is a contradiction. Thus \(\gamma_t^+(G) = a + b + 2 \).

Open Problem 2

For every pair \(a, b \) of positive integers with \(2 \leq a \leq b \), does there exists a connected graph \(G \) such that \(\gamma_t(G) = a \) and \(\gamma_t^+(G) = b \)?

Open Problem 3

For any three of positive integers \(a, b \) and \(c \) with \(2 \leq a \leq b \leq c \), does there exists a connected graph \(G \) such that \(f_{\gamma_t}(G) = a \), \(\gamma_t(G) = b \) and \(\gamma_t^+(G) = c \)?