CHAPTER 1

Preliminaries

Basic Definitions and Results

In this chapter we collect the basic definitions and theorems which are needed for the subsequent chapters. For graph theoretic terminology, we refer to [11, 17].

Definition 1.1

A graph \(G = (V, E) \) is a finite, non empty set \(V(G) \), together with a (possibly empty) set \(E(G) \) of 2-element subsets of \(V(G) \). The elements of \(V \) are called vertices, while those of \(E \) are called edges.

The number of vertices in \(G \) is called the order of \(G \), denoted by \(n = |V(G)| \), while the number of edges in \(G \) is called the size of \(G \), denoted by \(m = |E(G)| \).

A graph of order \(n \) and size \(m \) is often referred as \((n,m) \)-graph. If the unordered pair \(e = \{u, v\} \) is an edge of the graph \(G \), informally written as \(e = uv \), it is said that the vertices \(u \) and \(v \) are adjacent in \(G \) and that the edge \(e \) joins \(u \) and \(v \). The edge \(e \) is said to be incident with the vertices \(u \) and \(v \).

A graphical representation of \((7,8) \)-graph, \(G \) is shown in Figure 1.1. The vertex set is \(V(G) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\} \) and the edge set is \(E(G) = \{v_1v_6, v_1v_7, v_2v_4, v_3v_5, v_3v_6, v_3v_7, v_4v_5, v_5v_6\} \). The vertices \(v_1 \) and \(v_6 \) are adjacent in \(G \), while \(v_1 \) and \(v_2 \) are not.
Chapter 1

Preliminaries

Definition 1.2

The open neighbourhood of a vertex v in a graph G is defined as the set $N_G(v) = \{ u \in V(G) : uv \in E(G) \}$, while the closed neighbourhood of v in G is defined as $N_G[v] = N_G(v) \cup \{ v \}$.

For any vertex v in a graph G, the number of vertices adjacent to v is called the degree of v in G, denoted by $\deg_G(v)$. Note that if the reference to a graph G is clear from the context, the subscript is often omitted, hence written as $\deg(v)$ only.

If the degree of a vertex is 0, it is called an isolated vertex, while if the degree is 1, it is called an end-vertex.

The minimum degree of vertices in G is defined by $\delta(G) = \min \{ \deg(v) / v \in V(G) \}$. The maximum degree of vertices in G is defined by $\Delta(G) = \max \{ \deg(v) / v \in V(G) \}$.

Referring to the graph G in Figure 1.1, the open neighbourhood of the vertex v_5 is $N_G(v_5) = \{ v_3, v_4, v_6 \}$, while its closed neighbourhood is $N_G[v_5] = \{ v_3, v_4, v_5, v_6 \}$. The graph has no isolated vertices, but v_2 is in fact, an end-vertex.
The minimum degree of G is hence $\delta(G) = 1$, while the maximum degree is $\Delta(G) = 3$.

Theorem 1.3 [17]

Let G be a (n, m)-graph, with $V(G) = \{v_1, v_2, ..., v_n\}$. Then $\sum_{i=1}^{n} \deg_G(v_i) = 2m$.

That is when the degrees of all the vertices are summed, each edge is counted twice, one for each of the vertices that it joins.

Definition 1.4

A vertex v is called an *extreme vertex* of a graph G if the subgraph induced by its neighbours is complete.

Remark 1.5

Every end vertex is an extreme vertex, but the converse is not true. For the graph G given in Figure 1.2, v_1 is an extreme vertex of G, but it is not an end vertex of G.

![Figure 1.2](image)
Definition 1.6

For a vertex subset S of a graph G, a vertex $w \in V(G) \setminus S$ is called an S-external private neighbour (S-epn) of v, if $N(w) \cap S = \{v\}$. The set of all S-epn’s of v is denoted by $epn(v, S)$. Considering the vertex subset $S = \{v_5, v_6\}$ of G in Figure 1.1, the vertex v_4 is an S-epn of v_5 while v_3 is not an external private neighbour of any vertex in S. A vertex set $S \subseteq V(G)$ of a graph is called an irredundant set of G if, for every vertex $v \in S$, $epn(v, S) \neq \emptyset$ or v is an isolated vertex in $\langle S \rangle$. In otherwords, S is irredundant if every vertex in S has at least one external private neighbour, or is not adjacent to any other vertex in S. Again considering the graph G of Figure 1.1, the set $S = \{v_5, v_6\}$ is irredundant since v_5 has v_4 as an S-epn and v_6 has v_1 as an S-epn. Here an external private neighbour is referred as a private neighbour.

Definition 1.7

A graph without loops (an edge with identical ends) and multiple edges (more than one edge joins the same pair of vertices) is called a simple graph.

The null graph is the graph whose vertex set and edge set are empty.

Definition 1.8

The complement \overline{G} of a graph G is the graph for which $V(\overline{G}) = V(G)$ and $uv \in E(\overline{G})$ if and only if $uv \notin E(G)$.

A $(5, 4)$-graph, G is shown in Figure 1.3 (a), while it’s complement \overline{G} is the $(5,6)$-graph, G shown in Figure 1.3 (b).
Chapter 1 Preliminaries

Definition 1.9

Two graphs G and H are called isomorphic, written as $G \cong H$, if there exists a one-to-one mapping $\varphi: V(G) \rightarrow V(H)$ such that $uv \in E(G)$ if and only if $\varphi(u)\varphi(v) \in E(H)$. The function φ is called an isomorphism. If φ map G on to itself, it is called an automorphism.

Two graphs G and H are said to be equal if $V(G) = V(H)$ and $E(G) = E(H)$. Hence, equal graphs are isomorphic but not conversely.

The graph G shown in Figure 1.4 (b) is isomorphic (but not equal) to the graph G shown in Figure 1.4 (a), while the graph G shown in Figure 1.4 (c), is both equal and isomorphic to the graph G in Figure 1.4 (a).
Definition 1.10

A graph H is called a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, and is called a spanning subgraph of G if $V(H) = V(G)$ and $E(H) \subseteq E(G)$.

For a non empty vertex subset $S \subseteq V(G)$ of a graph G then so-called induced subgraph of S in G, denoted by $\langle S \rangle$, is the subgraph of G with vertex set $V(\langle S \rangle) = S$ and edge set $E(\langle S \rangle) = \{uv \in E(G) : u, v \in S\}$.

The graph G shown in Figure 1.5 (b) is an example of a sub graph of G, shown in Figure 1.5 (a), while the graph G in Figure 1.5 (c) is a spanning subgraph of G. Lastly, the induced sub graph $\langle \{v_1, v_2, v_4, v_5\} \rangle$ is illustrated in Figure 1.5 (d).

Figure 1.5

\[G \]
For a given graph F, a graph G is called F-free if G does not contain an induced sub graph isomorphic to F. If $F \cong K_{1,3}$ on F-free is often called claw-free.

In particular, we say a graph is triangle-free if it is K_3-free, diamond-free if it is $(K_4 - e)$-free and quadrilateral-free if it is C_4-free.

Definition 1.11

The deletion of a non-empty vertex subset $S \subseteq V(G)$ from a graph G is the subgraph with vertex set $V(G) \setminus S$ and edge set $\{uv \in E(G) : u, v \notin S\}$. Such a subgraph is denoted by $G - S$. For any edge subset $J \subseteq E(G)$ the deletion of the edge set J, $G - J$, is the spanning subgraph of G with edge set $E(G) \setminus J$.

Considering the graph G in Figure 1.6 (a), with vertex subset $S = \{v_1\}$ and edge subset $J = \{v_1v_2, v_2v_3, v_3v_4, v_4v_5, v_5v_1\}$, the subgraph $G - S$ is shown in Figure 1.6 (b), while $G - J$ is shown in Figure 1.6 (c).
Definition 1.12

A walk in a graph G is an alternating sequence of vertices and edges $v_0, e_1, v_1, e_2, v_2, ..., v_{i-1}, e_i, v_i, ..., v_n$, also called as $v_0 - v_n$ walk, such that $e_i = v_{i-1}v_i$ for $i = 1, 2, ..., n$. The number of edges in the walk defines its length, while the number of vertices defines its order. When referring to a walk, the edges are often omitted where ambiguity is impossible. An example of a walk in the graph G in Figure 1.6 (a) is v_1, v_3, v_5, v_1, v_4.

A walk in which no edge is repeated is called a trial, while a walk in which no vertex is repeated is called a path.

A cycle is a walk of length $n \geq 3$ in which the begin and end-vertices v_0 and v_n, are the same, but in which no other vertices repeat.

The length of a smallest cycle in a graph is referred to as its girth and it is denoted by $g(G)$.

Considering the graph G in Figure 1.6 (a), the walk v_1, v_3, v_5 is a path of order 3 and length 2, while v_1, v_3, v_5, v_1 is a cycle of length 3 and $g(G) = 3$.

Apart from this, a set $S \subseteq V(G)$ is called a packing in G if $N[u] \cap N[v] = \emptyset$ for every pair $u, v \in S$ (in otherwords, the shortest path between any pair of vertices in S is at least 3).
Definition 1.13

For vertices u and v of a graph G, u is said to be connected to v, if G contains a $u - v$ path. The graph G is called a *connected* graph if the vertices u and v are connected for any pair $u, v \in V(G)$. A graph which is not connected is said to be *disconnected*.

A subgraph H of G is called a *component* of G if H is a maximally connected subgraph of G. An edge e is called a *bridge* (cut edge) of G if the graph $G - e$ has more components than G, and a vertex u is called a *cut-vertex* of G if the graph $G - v$ has more components than G.

Hence, an edge in a connected graph G is a bridge (cut edge) if $G - e$ is disconnected and a vertex v in a connected graph G is a cut vertex if $G - v$ is disconnected.

The graph G shown in Figure 1.7 has the edge v_3v_6 as a bridge, while v_3 is a cut vertex of G.

![Diagram of a connected graph and its components](image)

Figure 1.7 Illustration of a bridge and cut-vertex in the connected graph G
Property 1.14 [17]

An edge e of a connected graph G is a bridge of G if and only if e does not lie on a cycle of G.

Theorem 1.15 [17]

a) Let v be a cut-vertex of a connected graph G, and let u and w be vertices in distinct components of $G - v$. Then v lies on every $u - w$ path in G.

b) Let e be a cut-edge of a connected graph G, and let u and w be vertices in distinct components of $G - e$. Then e lies on every $u - w$ path in G.

Definition 1.16

The **union** of two graphs H_1 and H_2 denoted by $H_1 \cup H_2$, is the graph H with vertex set $V(H) = V(H_1) \cup V(H_2)$ and the edge set $E(H) = E(H_1) \cup E(H_2)$.

The **join** of two graphs is denoted by $H_1 + H_2$ and is the union of H_1 and H_2 as well as the edges uv with $u \in V(H_1)$ and $v \in V(H_2)$.

The **Cartesian Product** of the two graphs H_1 and H_2, denoted by $H_1 \times H_2$ is the graph with vertex set $V(H_1) \times V(H_2)$, two vertices (u_1, u_2) and (v_1, v_2) being adjacent in $H_1 \times H_2$ if and only if either $u_1 = v_1$ and $u_2 v_2 \in E(H_2)$, or $u_2 = v_2$ and $u_1 v_1 \in E(H_1)$.

From the symmetry in the definition it follows that, $H_1 \cup H_2 \cong H_2 \cup H_1$, $H_1 + H_2 \cong H_2 + H_1$ and $H_1 \times H_2 \cong H_2 \times H_1$. These are illustrated below in Figure 1.8 (a) – (c) for the graphs C_3 and P_2.

10
Chapter 1 Preliminaries

Definition 1.17

A graph G is called r-regular if each vertex of G has degree r. A graph G is referred to as regular if it is r-regular. Any 1-regular subgraph of G is called a matching of G. A matching of G with the maximum number of vertices is called a maximum matching of G, while the matching number $\alpha(G)$ denotes the number of edges in a maximum matching of G. A perfect matching of G, if it exists, is a matching of G containing all the vertices of G. The 3-regular graph G in Figure 1.9 (a) possesses a perfect matching, shown in Figure 1.9 (b).
Definition 1.18

Let G be a graph of order n with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and let $S = \{u_1, u_2, \ldots, u_n\}$ be a set of vertices disjoint from V. The corona of G may be defined as the graph with vertex set $V \cup S$ and edge set $E(G) \cup \{u_iv_i : i = 1, 2, \ldots, n\}$.

Figure 1.10 Illustration of the Corona of a graph

Definition 1.19

A complete graph of order n, denoted by K_n, is a graph in which every distinct pair of vertices are adjacent. The complete graph K_n is hence $(n - 1)$ regular. As an illustration of this property, the complete graph K_6 is shown in Figure 1.11.

Figure 1.11 The complete graph $K_6
Definition 1.20

A bipartite graph G is a graph whose vertex set $V(G)$ can be partitioned into two subsets V_1 and V_2 such that every edge of G joins V_1 with V_2. (V_1, V_2) is called a bipartition of G. If G contains every edge joining V_1 and V_2, then G is called a complete bipartite graph. The complete bipartite graph with bipartition (V_1, V_2) such that $|V_1| = m$ and $|V_2| = n$ is denoted by $K_{m,n}$. A star is the complete bipartite graph $K_{1,n}$. Also, the bipartite graph $K_{1,n} \cong K_{n,1}$ is a popular graph, called as an n-star. The one vertex adjacent to all other vertices of the star is called the centre. The graph G given in Figure 1.12 is a complete bipartite graph $K_{3,4}$. The graph G given in Figure 1.13 is a star $K_{1,4}$.
Property 1.21 [17]

A non-trivial graph G is bipartite if and only if it had no odd cycles.

Definition 1.22

The simplest connected graph structure is known as a tree, which is an acyclic connected graph. A graph which is acyclic, is called a forest, and it consists of a number of disconnected trees.

A leaf of a tree T is an end-vertex of T. Any vertex adjacent to a leaf is called support vertex, while an r-support vertex is a vertex adjacent to at least r leaves.

If $e = \{uv\}$ is an edge of a graph G with $d(u) = 1$ and $d(v) > 1$, then we call e a pendant edge (end edge), u a leaf and v a support vertex.

A tree of order 10 is shown in Figure 1.14 (a), in which the 5 leaves are indicated as dark vertices. The vertex v_5 is a support vertex and v_8 is a 2-support vertex.

![Illustrations of trees](Image)

Figure 1.14 Illustrations of trees
Definition 1.23

A tree is called a *Caterpillar* if a path results when all the leaves are removed. If the said path is $P_n: v_1, v_2, ..., v_n$ the Cater Pillar $C(p_1, p_2, ..., p_n)$ is such that v_1 is joined to p_1 leaves, v_2 to p_2 leaves and so on. An example of a Caterpillar $C(3, 1, 2)$ of order 9, with 6 leaves, is shown in Figure 1.14 (b).

Definition 1.24

Another special type of tree is called a *spider*, which is a number of equally sized paths with one coinciding end-vertex. Denote by $S_{m \times n}$, the spider consists of m paths of order n, $n \geq 2$, with the centre vertex being the coinciding end-vertex of each path.

If the paths are not all of the same length, the graph constructed in this manner is called a *wounded spider* and is denoted by $S_{n_1, n_2, ..., n_m}$, where $n_i \geq 2$ denotes the order of the i^{th} path, for $i = 1, 2, ..., m$. Examples of spider graphs $S_{4 \times 3}$ and $S_{2,2,3,3}$ are shown in Figure 1.15.

![Spider Graphs](image-url)
Definition 1.25

The tree obtained from a star $K_{1,n}$ by subdividing every edge exactly once is called a subdivided star, which we denote by $K_{1,n}^*$.

Definition 1.26

Consider a cycle of length $n \geq 3$, $C_n = v_1, v_2, ..., v_n$ and another vertex v_0 say. The wheel W_n of order n may be defined as the graph joining $C_n + (v_0)$, with the vertex v_0 some times referred to as the hub. The edges connecting the hub to the rest of the graph are often referred to as spokes. The wheel graphs W_4 and W_5 are shown below in Figure 1.16 as examples.

![Figure 1.16 Illustrations of Wheels](image)

(a) The wheel graph W_4
(b) The wheel graph W_5

Definition 1.27

A vertex subset $S \subseteq V(G)$ of G is called independent if no two vertices in S are adjacent in G. An independent set S of vertices in a graph G is called a maximal independent set if S is not a proper subset of any other independent set of G.

The maximum cardinality of such maximal independent set S is called the independence number of G and is denoted by $\beta(G)$.
For the bipartite graph sets of $K_{2,3}$, shown in Figure 1.17 (a), both vertex sets
\{v_1, v_2\} and \{v_3, v_4, v_5\} are maximal independent sets of $K_{2,3}$, it follows that
$\beta(K_{2,3}) = 3$.

\[\text{(a) For the graph } K_{2,3}, \beta(K_{2,3}) = 3 \quad \text{(b) For the graph } G, w(G) = 4 \text{ and } C(G) = 2\]

\[G\]

Figure 1.17

Definition 1.28

Opposite to the notion of independence is the notion of a *clique*, which is complete subgraph of G that is not an induced subgraph of any other complete subgraph of G, in other words a maximal complete subgraph of G. The maximum order of a clique in G is then so-called *Clique number* of G, denoted by $w(G)$. The minimum number of cliques into which a graph G may be partitioned is known as the *clique partition number*, $C(G)$.

For the vertex subset \{v_1, v_2, v_3, v_6\} indicated as dark vertices in the graph G shown in Figure 1.17 (b), the induced graph \(\langle v_1, v_2, v_3, v_6 \rangle \cong K_4 \) is the largest clique in the graph G, so that $w(G) = 4$, while $C(G) = 2$.

17
Definition 1.29

A *colouring* of a graph G is an assignment of colours (or values) to the vertices of G such that no two adjacent vertices have the same colour (value).

The minimum number of colours that may be used for such an assignment is called the *vertex chromatic number* of G and is denoted by $\chi(G)$. If $\chi(G) = n$ for a graph G, then the graph is said to be n-*chromatic*.

Definition 1.30

For vertices u and v in a connected graph G, the *distance* $d(u, v)$ is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a $u-v$ *geodesic*. The *eccentricity* $e(v)$ of a vertex v in G is the maximum distance from v and a vertex of G. The minimum eccentricity among the vertices of G is the *radius*, $\operatorname{rad} G$ or $r(G)$ and the maximum eccentricity is its *diameter*, $\operatorname{diam} G$ of G. Two vertices u and v of G are *antipodal* if $d(u, v) = \operatorname{diam} G$ or $d(G)$. A *double star* is a tree of diameter 3. A graph is said to be *self-centered* if $\operatorname{rad} G$ is equal to $\operatorname{diam} G$.

For the graph G given in Figure 1.18, $e(v_1) = 3, e(v_2) = 2, e(v_3) = 3, e(v_4) = 3, e(v_5) = 3, e(v_6) = 4, e(v_7) = 4$, $\operatorname{rad} G = 2$, centre of G is v_2 and $\operatorname{diam} G = 4$. Here $d(v_6, v_7) = 4 = \operatorname{diam} G$. Therefore the vertices v_6 and v_7 are antipodal. The graph G given in Figure 1.19 is a double star.
Theorem 1.31 [31]

For every connected graph G, $\text{rad } G \leq \text{diam } G \leq 2 \text{ rad } G$.

Definition 1.32

A graph G is *geodetic* if each pair of vertices in G is joined by a unique shortest path.

Definition 1.33

Let $G = (V, E)$ be a connected graph with at least three vertices. For subsets A and B of $V(G)$, the *distance* $d(A, B)$ is defined as $d(A, B) = \min\{d(x, y) : x \in A, y \in B\}$. A $u - v$ path of length $d(A, B)$ is called an $A - B$ geodesic joining the sets A, B, \[\text{...}\]
where $u \in A$ and $v \in B$. A vertex x is said to lie on an $A - B$ geodesic if x is a vertex of an $A - B$ geodesic.

Example 1.34
For the graph G given in Figure 1.20 with $A = \{v_4, v_5\}$ and $B = \{v_1, v_2, v_7\}$, the paths $P: v_5, v_6, v_7$ and $Q: v_4, v_3, v_2$ are the only two $A - B$ geodesics so that $d(A, B) = 2$.

![Figure 1.20](image)

Definition 1.35
A geodetic set of G is a set $S \subseteq V(G)$ such that every vertex of G is contained in a geodesic joining some pair of vertices in S. The geodetic number $g(G)$ of G is the minimum order of its geodetic sets and any geodetic set of order $g(G)$ is a geodetic basis.

Example 1.36
For the graph G given in Figure 1.21, $S = \{v_1, v_3, v_4\}$ is a geodetic basis of G so that $g(G) = 3$.
Definition 1.37
Let G be a connected graph and S a geodetic basis of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique geodetic basis containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing geodetic number of S, denoted by $f(S)$, is the cardinality of a minimum forcing subset of S. The forcing geodetic number of G, denoted by $f(G)$, is $f(G) = \min \{ f(S) \}$, where the minimum is taken over all geodetic bases S in G.

Example 1.38
For the graph G given in Figure 1.22, $S_1 = \{v_1, v_2, v_4\}$, $S_2 = \{v_1, v_3, v_5\}$, $S_3 = \{v_2, v_3, v_4\}$, $S_4 = \{v_2, v_4, v_5\}$, $S_5 = \{v_2, v_3, v_5\}$ and $S_6 = \{v_3, v_4, v_5\}$ are the only geodetic bases of G such that $f(S_1) = f(S_2) = 2$ and $f(S_3) = f(S_4) = f(S_5) = f(S_6) = 3$. Thus $f(G) = 2$.
Results regarding geodetic number of a graph were studied by F. Buckley, F. Harary, L.V. Quintas, G. Chartrand and P. Zhang in [6, 8, 9, 10, 18].

Definition 1.39
Let \(G = (V, E) \) be a connected graph with at least three vertices. A set \(S \subseteq E \) is called an *edge-to-vertex geodetic set* if every vertex of \(G \) is either incident with an edge of \(S \) or lies on a geodesic joining a pair of edges of \(S \). The *edge-to-vertex geodetic number* \(g_{ev}(G) \) of \(G \) is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality \(g_{ev}(G) \) is an *edge-to-vertex geodetic basis* of \(G \).

Example 1.40
For the graph \(G \) given in Figure 1.23, the three \(v_1v_6 - v_3v_4 \) geodesics are : \(v_1, v_2, v_3 \); \(Q: v_1, v_2, v_4 \); and \(R: v_6, v_5, v_4 \) with each of length 2 so that \(d(v_1v_6, v_3v_4) = 2 \). Since the vertices \(v_2 \) and \(v_5 \) lie on the \(v_1v_6 - v_3v_4 \) geodesics \(P \) and \(R \) respectively, \(S = \{v_1v_6, v_3v_4\} \) is an edge-to-vertex geodetic basis of \(G \) so that \(g_{ev}(G) = 2 \).
Results regarding edge-to-vertex geodetic number, we can refer to [37].

Definition 1.41

Let $G = (V, E)$ be a connected graph with at least 3 vertices. A set $S \subseteq E$ is called an edge-to-edge geodetic set of G if every edge of G is an element of S or lies on a geodesic joining a pair of edges of S. The edge-to-edge geodetic number $g_{ee}(G)$ of G is the minimum cardinality of its edge-to-edge geodetic sets and any edge-to-edge geodetic set of cardinality $g_{ee}(G)$ is said to be a g_{ee}-set of G.

Example 1.42

For the graph G given in Figure 1.23, the three $v_1v_6-v_3v_4$ geodesics are $P: v_1, v_2, v_3, Q: v_1, v_2, v_4$; and $R: v_6, v_5, v_4$ with each of length 2 so that $d(v_1v_6, v_3v_4) = 2$. Since the edge v_2v_5 does not lie on $v_1v_6-v_3v_4$ geodesics, $S = \{v_1v_6, v_3v_4\}$ is not an edge-to-edge geodetic set of G. It is easily verified that no two element subset of E is an edge-to-edge geodetic set of G and so $g_{ee}(G) \geq 2$. However $S_1 = \{v_1v_6, v_3v_4, v_2v_5\}$ is an edge-to-edge geodetic set of G so that $g_{ee}(G) = 3$.

Example 1.43

For the graph G given in Figure 1.20, $S_1 = \{v_1v_2, v_6v_7, v_4v_5\}$ and $S_2 = \{v_1v_7, v_2v_3, v_4v_5\}$ are two g_{ee}-sets of G. Thus there can be more than one g_{ee}-set of G.

Theorem 1.44 [1]

Let G be a connected graph with size m. Then each end-edge of G belongs to every edge-to-edge geodetic set of G.
Theorem 1.45 [1]
For any connected graph G, $g_{ee}(G) = m$ if and only if G is a star.

Theorem 1.46 [6]
For a connected graph G, $g(G) = n$ if and only if $G = K_n$.

Definition 1.47
A vertex subset $S \subseteq V(G)$ of G is called a dominating set if every vertex $v \in V(G) \setminus S$ is adjacent to a vertex $u \in S$. A dominating set is a minimal dominating set if no proper subset of S is a dominating set.

The lower domination number (often referred to simply as the domination number), $\gamma(G)$, of a graph G denotes the minimum cardinality of such minimal dominating sets of G. A minimum dominating set of a graph G is hence often called as a $\gamma(G)$-set. The maximum cardinality of a minimal dominating set of G is called the upper domination number, $\Gamma(G)$.

Example 1.48
For the graph G given in Figure 1.22, $S = \{v_2, v_5, v_6\}$ is the unique minimum dominating set of G so that $\gamma(G) = 3$.

![Figure 1.22](image_url)
Definition 1.49

Let G be a connected graph and S a dominating set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique dominating set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing domination number of S, denoted by $f_f(S)$, is the cardinality of a minimum forcing subset of S. The forcing domination number of G, denoted by $f_f(G)$, is $f_f(G) = \min\{f_f(S)\}$, where the minimum is taken over all dominating sets S in G.

Example 1.50

For the graph G given in Figure 1.22, $S = \{v_2, v_5, v_6\}$ is the unique minimum dominating set of G so that $f_f(G) = 0$. For the graph G given in Figure 1.23, $S_1 = \{v_1, v_3, v_6\}$ and $S_2 = \{v_3, v_6, v_8\}$ are the dominating sets of G such that $f_f(S_1) = f_f(S_2) = 1$ so that $f_f(G) = 1$. For the graph G given in Figure 1.24, $S_1 = \{v_1, v_3\}$, $S_2 = \{v_3, v_5\}$ and $S_3 = \{v_3, v_6\}$ such that $f_f(S_1) = 2$ and $f_f(S_2) = f_f(S_3) = 1$ so that $f_f(G) = 1$.

Theorem 1.51[7]

Let G be a connected graph and X be the set of all dominating vertices of G. Then $f_f(G) \leq \gamma(G) - |X|$.
Definition 1.52

A set of edges M of G is called an *edge dominating set* if every edge of $E - M$ is adjacent to an element of M. An *edge domination number*, $\gamma_e(G)$ of G is the minimum cardinality of an edge dominating sets of G.

Example 1.53

For the graph G given in Figure 1.25, $S_1 = \{v_5v_6, v_1v_3\}$ and $S_2 = \{v_5v_6, v_2v_3\}$ are the minimum edge dominating sets of G so that $\gamma_e(G) = 3$.

Definition 1.54

Let G be a connected graph and S an edge dominating set of G. A subset $T \subseteq S$ is called a *forcing subset* for S if S is the unique edge dominating set containing T. A forcing subset for S of minimum cardinality is a *minimum forcing subset of S*. The *forcing edge domination number* of S, denoted by $f_{\gamma_e}(S)$, is the cardinality of a minimum forcing subset of S. The *forcing edge domination number* of G, denoted by $f_{\gamma_e}(G)$, is $f_{\gamma_e}(G) = \min\{f_{\gamma_e}(S)\}$, where the minimum is taken over all edge dominating sets S in G.

![Figure 1.25](image-url)
Example 1.55

For the graph G given in Figure 1.26, $S = \{v_3, v_4, v_1, v_7\}$ is the unique minimum edge dominating set of G so that $f_{ye}(G) = 0$. For the graph G given in Figure 1.25, $f_{ye}(S_1) = f_{ye}(S_2) = 1$ so that $f_{ye}(G) = 1$.

![Figure 1.26](image)

Theorem 1.56 publication position [10]

Let G be a connected graph. Then

(a) $f_{ye}(G) = 0$ if and only if G has a unique minimum edge dominating set.

(b) $f_{ye}(G) = 1$ if and only if G has at least two minimum edge dominating sets, one of which is a unique minimum edge dominating set containing one of its elements, and

(c) $f_{ye}(G) = \gamma_e(G)$ if and only if no minimum edge dominating set of G is the unique minimum edge dominating set containing any of its proper subsets.

Theorem 1.57 publication position [10]

Let G be a connected graph and W be the set of all edge dominating edges of G. Then $f_{ye}(G) \leq \gamma_e(G) - |W|$.

27
Definition 1.58

A total dominating set of a connected graph G is a set S of vertices of G such that every vertex is adjacent to a vertex in S. Every graph without isolated vertices has a total dominating set, since $S = V(G)$ is such a set. The total domination number $\gamma_t(G)$ of G is the minimum cardinality of total dominating sets S in G.

Example 1.59

For the graph G given in Figure 1.27, $S_1 = \{v_2, v_3\}$ and $S_2 = \{v_3, v_5\}$ are the total dominating sets of G so that $\gamma_t(G) = 2$.

![Figure 1.27](image)

Definition 1.60

The total dominating set S in a connected graph G is called a minimal total dominating set if no proper subset of S is a total dominating set of G. The upper total domination number $\gamma_t^+(G)$ of G is the maximum cardinality of a minimal total dominating sets of G.

Example 1.61

For the graph G given in Figure 1.28, $S_1 = \{v_2, v_4, v_5\}$ and $S_2 = \{v_3, v_4, v_5\}$ are the minimum total dominating sets of G so that $\gamma_t(G) = 3$. The set $S = \{v_1, v_3, v_5, v_6\}$ is a total dominating set of G and it is clear that no proper subset of S is the total
dominating set of G and so S is the minimal total dominating set of G. Also it is easily verified that no five element or six element subset is a minimal total dominating set of G, it follows that $\gamma_t^+(G) = 4$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{g.png}
\caption{Figure 1.28}
\end{figure}

Definition 1.62

A global dominating set of G is a set of vertices that dominates both G and the complement graph \overline{G}. The global domination number, $\gamma_g(G)$ of G is the minimum cardinality of a global dominating sets S in G.

Example 1.63

For the graph G given in Figure 1.27, $S_1 = \{v_1, v_4\}$ is the minimum global dominating set of G so that $\gamma_g(G) = 2$.

Property 1.64 [32]

(i) For a graph G with n vertices, $\gamma_g(G) = n$ if and only if $G = K_n$ or $\overline{K_n}$

(ii) $\gamma_g(K_{m,n}) = 2$ for all $m, n \geq 1$.

(iii) $\gamma_g(C_4) = 2, \gamma_g(C_5) = 3$ and $\gamma_g(C_n) = \left\lceil \frac{n}{3} \right\rceil$ for all $n \geq 6$.

(iv) $\gamma_g(P_n) = 2$, for $n = 2, 3$ and $\gamma_g(P_n) = \left\lceil \frac{n}{3} \right\rceil$ for all $n \geq 4$.

29
Definition 1.65

A *total global dominating set* of G is a total dominating set of both G and \overline{G}. The *total global domination number* $\gamma_{tg}(G)$ of G is the minimum cardinality of a total global dominating sets S in G.

Example 1.66

For the graph G given in Figure 1.27, $S_1 = \{v_1, v_2, v_3, v_5\}$, $S_2 = \{v_1, v_2, v_3, v_4\}$ and $S_3 = \{v_1, v_3, v_4, v_5\}$ are the minimum total global dominating sets of G so that $\gamma_{tg}(G) = 4$.

Property 1.67 [26]

A total dominating set S of G is a total global dominating set if and only if for each vertex $v \in V$ there exists a vertex $u \in S$ such that v is not adjacent to u.

Property 1.68 [26]

Let G be a graph such that neither G nor \overline{G} have an isolated vertex. Then

i) If $\gamma_{tg}(G) = n$ if and only if $G = P_4$ or mK_2 or \overline{K}_2, $m \geq 2$.

ii) If $G \neq P_4$ or mK_2 or $m\overline{K}_2$, $m \geq 2$ then $\gamma_{tg}(G) \leq n - 1$.