CHAPTER 4
The Total Edge Domination Number of a Graph

In this chapter we introduce the concept of the total edge domination number $\gamma_{te}(G)$ of a connected graph G with at least 3 vertices and study some of its general properties. It is shown that, for any integer $a \geq 2$, there exists a connected graph G such that $\gamma_e(G) = \gamma_{te}(G) = a$. We have shown that, for every pair a, b of positive integers with $1 \leq a < b$, there exists a connected graph G such that $\gamma_e(G) = b$ and $\gamma_{te}(G) = a + b$. We also introduce the concept of the forcing total edge domination number $f_{\gamma_{te}}(G)$ of a connected graph G with at least 3 vertices and study some of its general properties. Connected graphs with forcing total edge domination number 0 or 1 are characterized. It is shown that, for every pair a, b of integers with $0 \leq a < b$ and $b > a + 1$, there exists a connected graph G such that $f_{\gamma_{te}}(G) = a$ and $\gamma_{te}(G) = a + b$. We have shown that, for any integer $a \geq 2$, there exists a connected graph G such that $f_{\gamma_{te}}(G) = f_{\gamma_e}(G) = a$. It is also shown that, for any integer $a \geq 2$, there exists a connected graph G such that $f_{\gamma_{te}}(G) = 0$ and $f_{\gamma_e}(G) = a$. We have shown that, for any integer $a \geq 2$, there exists a connected graph G such that $f_{\gamma_{te}}(G) = a$ and $f_{\gamma_e}(G) = 0$. It is shown that, for every pair a, b of integers with $0 \leq a < b$, there exists a connected graph G such that $f_{\gamma_{te}}(G) = a$ and $f_{\gamma_e}(G) = b$. Also it is shown that, for every pair a, b of integers with $0 \leq a < b$ there exists a connected graph G such that $f_{\gamma_e}(G) = a$ and $f_{\gamma_{te}}(G) = b$. Next we introduce the concept of the upper total edge domination number $\gamma_{te}^+(G)$ of a connected graph G with at least 3 vertices.
and study some of its general properties. It is shown that for any integer $a \geq 1$, there exists a connected graph G such that $\gamma_{te}(G) = a + 1$ and $\gamma_{te}^+(G) = 2a$.

The Total Edge Domination Number of a Graph

Definition 4.1

An edge dominating set S of G is called a total edge dominating set of G if $\langle S \rangle$ has no isolated edges. The total edge domination number $\gamma_{te}(G)$ of G is the minimum cardinality taken over all total edge dominating sets of G.

Example 4.2

For the graph G given in Figure 4.1, $S_1 = \{v_1v_2, v_2v_3\}$, $S_2 = \{v_2v_3, v_3v_4\}$, $S_3 = \{v_3v_4, v_4v_1\}$ and $S_4 = \{v_4v_1, v_1v_2\}$ are the minimum total edge dominating sets of G so that $\gamma_{te}(G) = 2$.

![Figure 4.1](image)

Theorem 4.3

For a connected graph G, $1 \leq \gamma_e(G) \leq \gamma_{te}(G) \leq m$.

67
Proof

Any edge dominating set needs at least one edge and so $\gamma_e(G) \geq 1$. Since every total edge dominating set is an edge dominating set, $\gamma_e(G) \leq \gamma_{te}(G)$. Also, since $E(G)$ is the total edge dominating set of G, it is clear that $\gamma_{te}(G) \leq m$. Thus $1 \leq \gamma_e(G) \leq \gamma_{te}(G) \leq m$. ■

Remark 4.4

The bounds in Theorem 4.3 are sharp. For the graph $G = C_3$, $\gamma_e(G) = 1$, $G = C_4$, $\gamma_e(G) = \gamma_{te}(G) = 2$ and $G = P_3$, $\gamma_{te}(G) = m = 2$. Also all the inequalities in Theorem 4.3 are strict. For the graph $G = P_7$, $\gamma_e(G) = 2$, $\gamma_{te}(G) = 4$ and $m = 6$ so that $1 < \gamma_e(G) < \gamma_{te}(G) < m$.

Theorem 4.5

For any graph G with $\Delta \geq 4$, $\gamma_{te}(G) \leq m - \Delta + 2$.

Proof

Let v be a vertex of maximum degree. Let $\{v_1, v_2, \ldots, v_{\Delta}\}$ be the neighbours of v. Let $M = \{vv_1, vv_2, \ldots, vv_{\Delta}\}$. Then $S = (E - M) \cup \{vv_1, vv_2\}$ is a total edge dominating set of G and so $\gamma_{te}(G) \leq m - \Delta + 2$. ■

Remark 4.6

The bound in Theorem 4.5 is sharp. For the graph $G = K_{1,4}$, $m = 4$, $\Delta = 4$, $\gamma_{te} = 2$, $m - \Delta + 2 = 2$. Therefore $\gamma_{te}(G) = m - \Delta + 2$. Also, the inequality in Theorem 4.5 is strict. For the graph G given in Figure 4.1, $m = 4$, $\Delta = 2$, $\gamma_{te} = 2$, $m - \Delta + 2 = 4$. Therefore $\gamma_{te}(G) < m - \Delta + 2$.
Chapter 4
The total edge domination number of a graph

Theorem 4.7

Let G be a bipartite graph with no isolated vertices. Then $\gamma_{te}(G) = m - \Delta(G) + 2$ if and only if G is a graph in the form of $K_{1,t} \cup rK_{1,2}$ for $r \geq 0$.

Proof

If G is of the form $K_{1,t} \cup rK_{1,2}$, $r \geq 0$. Clearly $\gamma_{te}(G) = m - \Delta(G) + 2$.

Conversely assume that $\gamma_{te}(G) = m - \Delta(G) + 2$. Now let G be a bipartite graph with partitions $A \cup B$ and $x \in A$ where $\deg(x) = \Delta(G) = t$.

We continue our proof in four stages.

Stage 1. We claim that for every vertex $y \in A - \{x\}$, $N(y) - N(x) \neq \phi$. Suppose not, there exists a vertex in $A - \{x\}$, say y such that $N(y) \subseteq N(x)$. Let $u, w \in N(y)$ and $N(x) = \{v_1, v_2, ..., v_t\}$. Then $S = E - \{(xv_1, xv_2, ..., xv_3) \cup \{uy, wy\}\} \cup \{xu, xw\}$ is a total edge dominating set and $|S| = m - \lfloor \Delta(G) + 2 \rfloor + 2 = m - \Delta(G)$, a contradiction to $\gamma_{te}(G) = m - \Delta(G) + 2$.

Stage 2. We claim that for every vertex $y \in A - \{x\}$, $|N(y) - N(x)| = 2$. Now for every vertex $y \in A$, let $uy \in N(y)$. Let $A = \{y_1, y_2, ..., y_{|A|}\}$ implies that $u_{y_1}, u_{y_2}, ..., u_{y_{|A|}} \in N(y)$. Consider $X = \{y_1u_{y_1}, y_2u_{y_2}, ..., y_{|A|}u_{y_{|A|}}\}$. Clearly the set $S = X \cup \bigcup_{y \in A} \{y, uy\}$ is a total edge dominating set for G and so $|S| \leq 2|A|$ so that $\gamma_{te}(G) \leq 2|A|$ \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm}

Now let $y \in A - \{x\}$ such that $|N(y) - N(x)| \geq 3$.

Thus we have $m \geq 2|A| + \Delta(G)$

69
\[
\Rightarrow \gamma_{te}(G) + \Delta(G) - 2 \geq 2|A| + \Delta(G)
\]
\[
\Rightarrow \gamma_{te}(G) \geq 2|A| + 2
\]
\[
\Rightarrow \gamma_{te}(G) > 2|A|, \text{ which is a contradiction to (1).}
\]
Thus \(|N(y) - N(x)| \leq 2\). Since \(N(y) - N(x) \neq \emptyset\), and so \(|N(y) - N(x)|\) is either 1 or 2. Suppose \(|N(y) - N(x)| = 1\). Hence for every vertex \(y \in A - \{x\}\), \(|N(y) - N(x)| = 2\).

Stage 3. We claim that for every vertex \(y \in A - \{x\}\), \(N(y) \cap N(x) \neq \emptyset\). Suppose not, there exists vertices \(u, w \in N(y) \cap N(x)\). Now, \(S = E - (\{xv_1, xv_2, \ldots, xv_\delta\} \cup \{uy, wy\}) \cup \{xu, xw\}\) is a total edge dominating set and \(|S| = m - (\Delta(G) + 2) + 2 = m - \Delta(G)\), which is a contradiction to \(\gamma_{te}(G) = m - \Delta(G) + 2\).

Stage 4. We claim that for every \(y, z \in A - \{x\}\), \(N(y) \cap N(z) = \emptyset\). Suppose not, let \(u, w \in N(y) \cap N(z)\). Now, \(S = E - (\{xv_1, xv_2, \ldots, xv_\delta\} \cup \{uy, wy\}) \cup \{xv_1, xv_2\}\) is a total edge dominating set and \(|S| = m - \Delta(G)\), which is a contradiction to \(\gamma_{te}(G) = m - \Delta(G) + 2\). Hence, \(G\) is a graph in the form of \(K_{1,t} \cup rK_{1,2}\).

Theorem 4.8

Let \(G\) be a graph with \(diam(G) = 2\), then \(\gamma_{te}(G) \leq \delta(G) + 1\).

Proof

Let \(x \in V(G)\) and \(\deg(x) = \delta(G)\). Let \(N(x) = \{v_1, v_2, \ldots, v_\delta\}\). Let \(e = uv\) be an edge of \(G\) such that either \(u\) or \(v\) belongs to \(N(x)\). Then \(X = \{xv_1, xv_2, \ldots, xv_\delta, e\}\) is a total edge dominating set of \(G\) so that \(\gamma_{te}(G) \leq |X| = \delta(G) + 1\). Hence \(\gamma_{te}(G) \leq \delta(G) + 1\).
Chapter 4

The total edge domination number of a graph

Remark 4.9

The bound in Theorem 4.8 is sharp. For the graph $G = C_5$, $diam(G) = 2$, $\gamma_{te}(G) = 3$, $\delta(G) = 2$ so that $\gamma_{te}(G) = \delta(G) + 1$. Also the bound in Theorem 4.8 is strict. For the graph G given in Figure 4.2, $\gamma_{te}(G) = 2$, $\delta(G) = 2$ and $diam(G) = 2$ so that $\gamma_{te}(G) < \delta(G) + 1$.

![Figure 4.2](image)

In the following we determine the total edge domination number of some standard graphs.

Theorem 4.10

For any complete graph $G = K_n$ ($n \geq 3$), $\gamma_{te}(G) = 2$.

Proof

Let S be a set of two adjacent edges of G. Then S is a γ_{te}-set of G so that $\gamma_{te}(G) = 2$. $lacksquare$

Theorem 4.11

For any complete bipartite graph $G = K_{m,n}$ ($m, n \geq 2$), $\gamma_{te}(G) = 2$.

Proof

Let S be a set of two adjacent edges of G. Then S is a γ_{te}-set of G so that $\gamma_{te}(G) = 2$. $lacksquare$
Corollary 4.12

For any graph $G = K_{1,n}$ ($n \geq 2$), $\gamma_{te}(G) = 2$.

Proof

The proof is similar to Theorem 4.11. \[\square\]

Theorem 4.13

For any graph $G = P_n$ ($n \geq 3$), $\gamma_{te}(G) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{n+1}{2} & \text{if } n+1 \equiv 0 \pmod{4} \\ \frac{n-1}{2} & \text{if } n-1 \equiv 0 \pmod{4} \end{cases}

Proof

Let $V(P_n)$ be $v_1, v_2, ..., v_{n-1}, v_n$.

Case 1. n is even.

Subcase i. Let $n \equiv 0 \pmod{4}$. Let $n = 4k, k \geq 1$. Let S be any γ_{te}-set of G. Since every γ_{te}-set contains at least two adjacent edges and $n \equiv 0 \pmod{4}$, $\gamma_{te}(G) \geq \frac{n}{2}$.

Let $S = \{v_2v_3, v_3v_4, v_6v_7, v_7v_8, v_{10}v_{11}, v_{11}v_{12}, ..., v_{4k-2}v_{4k-1}, v_{4k-1}v_{4k}\}$. Then S is a minimum total edge dominating set of G so that $\gamma_{te}(G) = |S| = \frac{n}{2}$.

Subcase ii. Let $n \equiv 2 \pmod{4}$. Let $n = 4k + 2, k \geq 1$. Let S be any γ_{te}-set of G.

Since every γ_{te}-set contains at least two adjacent edges, $\gamma_{te}(G) \geq \frac{n}{2}$. Let $S = \{v_2v_3, v_3v_4, v_6v_7, v_7v_8, v_{10}v_{11}, v_{11}v_{12}, ..., v_{4k-2}v_{4k-1}, v_{4k-1}v_{4k}, v_{4k}v_{4k+1}\}$.

Then S is a minimum total edge dominating set of G so that $\gamma_{te}(G) = |S| = \frac{n}{2}$.
Case 2. n is odd.

Subcase i. Let $n + 1 \equiv 0 \pmod{4}$. Let $n = 4k - 1, k \geq 1$. Let S be any γ_{te}-set of G. Since every γ_{te}-set contains at least two adjacent edges and $n + 1 \equiv 0 \pmod{4}$, $\gamma_{te}(G) \geq \frac{n+1}{2}$. Let $S = \{v_1v_2, v_2v_3, v_3v_6, v_6v_7, v_9v_{10}, v_{10}v_{11}, \ldots, v_{4k-3}v_{4k-2}, v_{4k-2}v_{4k-1}\}$. Then S is a minimum total edge dominating set of G so that $\gamma_{te}(G) = |S| = \frac{n+1}{2}$.

Subcase ii. Let $n - 1 \equiv 0 \pmod{4}$. Let $n = 4k + 1, k \geq 1$. Let S be any γ_{te}-set of G. Since every γ_{te}-set contains at least two adjacent edges and $n - 1 \equiv 0 \pmod{4}$, $\gamma_{te}(G) \geq \frac{n-1}{2}$. Let $S = \{v_2v_3, v_3v_4, v_6v_7, v_7v_8, v_{10}v_{11}, v_{11}v_{12}, \ldots, v_{4k-2}v_{4k-1}, v_{4k-1}v_{4k}\}$. Then S is a minimum total edge dominating set of G so that $\gamma_{te}(G) = |S| = \frac{n-1}{2}$.

Theorem 4.14

For any graph $G = C_n$ ($n \geq 3$), $\gamma_{te}(G) = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \equiv 0 \pmod{4} \\ \frac{n+2}{2} & \text{if } n \equiv 2 \pmod{4} \end{cases}$

Proof

Let C_n be $v_1, v_2, \ldots, v_n, v_1$.

Case 1. n is odd.

Subcase i. Let $n + 1 \equiv 0 \pmod{4}$. Let $n = 4k - 1, k \geq 1$. Let S be any γ_{te}-set of G. Since every γ_{te}-set contains at least two adjacent edges and $n + 1 \equiv 0 \pmod{4}$, $\gamma_{te}(G) \geq \frac{n+1}{2}$. Let $S = \{v_1v_2, v_2v_3, v_5v_6, v_6v_7, v_9v_{10}, v_{10}v_{11}, \ldots, v_{4k-3}v_{4k-2}, v_{4k-2}v_{4k-1}\}$. Then S is a minimum total edge dominating set of G so that $\gamma_{te}(G) = |S| = \frac{n+1}{2}$.
v_{4k-1}). Then S is a minimum total edge dominating set of G so that
\[\gamma_{te}(G) = |S| = \frac{n+1}{2}. \]

Subcase ii. Let \(n \equiv 1 \pmod{4} \). Let \(n = 4k + 1, k \geq 1 \). Let S be any \(\gamma_{te} \)-set of G. Since every \(\gamma_{te} \)-set contains at least two adjacent edges and \(n \equiv 1 \pmod{4} \),
\[\gamma_{te}(G) \geq \frac{n+1}{2}. \]
Let \(S = \{v_1v_2, v_2v_3, v_5v_6, v_6v_7, v_9v_{10}, v_{10}v_{11}, ..., v_{4k-3}v_{4k-2}, v_{4k-2}v_{4k-1}, v_{4k-1}v_{4k}\} \). Then S is a minimum total edge dominating set of G so that
\[\gamma_{te}(G) = |S| = \frac{n+1}{2}. \]

Case 2. \(n \) is even.

Subcase i. Let \(n \equiv 0 \pmod{4} \). Let \(n = 4k, k \geq 1 \). Let S be any \(\gamma_{te} \)-set of G. Since every \(\gamma_{te} \)-set contains at least two adjacent edges and \(n \equiv 0 \pmod{4} \),
\[\gamma_{te}(G) \geq \frac{n}{2}. \]
Let \(S = \{v_1v_2, v_2v_3, v_5v_6, v_6v_7, v_9v_{10}, v_{10}v_{11}, ..., v_{4k-3}v_{4k-2}, v_{4k-2}v_{4k-1}\} \). Then S is a minimum total edge dominating set of G so that
\[\gamma_{te}(G) = |S| = \frac{n}{2}. \]

Subcase ii. Let \(n \equiv 2 \pmod{4} \). Let \(n = 4k + 2, k \geq 1 \). Let S be any \(\gamma_{te} \)-set of G. Since every \(\gamma_{te} \)-set contains at least two adjacent edges and \(n \equiv 2 \pmod{4} \),
\[\gamma_{te}(G) \geq \frac{n+2}{2}. \]
Let \(S = \{v_1v_2, v_2v_3, v_5v_6, v_6v_7, ..., v_{4k-3}v_{4k-2}, v_{4k-2}v_{4k-1}, v_{4k-1}v_{4k}, v_{4k}v_{4k+1}\} \). Then S is a minimum total edge dominating set of G so that
\[\gamma_{te}(G) = |S| = \frac{n+2}{2}. \]
In view of Theorem 4.3, we have the following realization results.

Theorem 4.15

For any integer \(a \geq 2 \), there exists a connected graph \(G \) such that \(\gamma_e(G) = \gamma_{te}(G) = a \).

Proof

Let \(P_i: u_i, v_1 \ (1 \leq i \leq a) \) be a path of order 2. Let \(G \) be a graph obtained from \(P_i \ (1 \leq i \leq a) \) by joining \(u_1 \) with each \(u_i \ (2 \leq i \leq a) \) and \(v_1 \) with each \(v_i \ (2 \leq i \leq a) \). The graph \(G \) is shown in Figure 4.3.

![Graph G](image)

Figure 4.3

First we claim that \(\gamma_e(G) = a \). Here \(M = \{u_1, v_1\} \) is the minimum cut set of \(G \). It is easily observed that each edge dominating set of \(G \) contains at least one edge from the components of \(G - M \) and so \(\gamma_e(G) \geq a - 1 \). It is easily verified that \(S = \{u_2v_2, u_3v_3, ..., u_av_a\} \) is not an edge dominating set of \(G \) and so \(\gamma_e(G) \geq a \). However \(S \cup \{u_1v_1\} \) is an edge dominating set of \(G \) so that \(\gamma_e(G) = a \).

Next we show that \(\gamma_{te}(G) = a \). It is easily observed that an edge \(u_1v_1 \) belongs to every minimum total edge dominating set of \(G \) and so \(\gamma_{te}(G) \geq 1 \). Let
Chapter 4
The total edge domination number of a graph

$H_i = \{u_1u_i, v_1v_i\} \ (2 \leq i \leq a)$. It is easily seen that every total edge dominating set of G contains at least one edge of $H_i \ (2 \leq i \leq a)$ so that $\gamma_{te}(G) \geq a - 1 + 1$. Now $S = \{u_1v_1, u_1u_2, u_1u_3, \ldots, u_1u_a\}$ is a total edge dominating set of G so that $\gamma_{te}(G) = a$.

Theorem 4.16

For every pair a, b of positive integers with $1 \leq a < b$, there exists a connected graph G such that $\gamma_e(G) = b$ and $\gamma_{te}(G) = a + b$.

Proof

Let $P_i: u_i, v_i, w_i \ (1 \leq i \leq a)$ be a path of order 3 and $Q_i: x_i, y_i \ (1 \leq i \leq b - a)$ be a path of order 2. Let G be a graph obtained from $P_i \ (1 \leq i \leq a)$ and $Q_i \ (1 \leq i \leq b - a)$ by adding two vertices x and y and join x with each $u_i \ (1 \leq i \leq a)$, y with each $w_i \ (1 \leq i \leq a)$ and also join y with each $x_i \ (1 \leq i \leq b - a)$. The graph G is shown in Figure 4.4.
First we claim that $\gamma_e(G) = b$. Let $X = \{u_1v_1, u_2v_2, \ldots, u_av_a, yx_1, yx_2, \ldots, yx_{b-a}\}$. It is easily observed that X is a subset of every minimum edge dominating set of G and so $\gamma_e(G) \geq b - a + a = b$. Now $S = X$ is an edge dominating set of G so that $\gamma_e(G) = b$.

Next we show that $\gamma_{te}(G) = a + b$. Let $X = \{u_1v_1, u_2v_2, \ldots, u_av_a, yx_1, yx_2, \ldots, yx_{b-a}\}$ and $H_i = \{xu_i, v_iw_i\}$ ($1 \leq i \leq a$). It is easily observed that X is a subset of every minimum total edge dominating set of G and so $\gamma_{te}(G) \geq b - a + a = b$. Also it is easily seen that every total edge dominating set of G contains at least one edge of H_i ($1 \leq i \leq a$) so that $\gamma_{te}(G) \geq a + b$. Now $S = X \cup \{xu_1, xu_2, \ldots, xu_a\}$ is a total edge dominating set of G so that $\gamma_{te}(G) = a + b$.

Open Problem 4

For every pair of positive integers a, b with $2 \leq a \leq b$, does there exists a connected graph G with $\gamma_e(G) = a$ and $\gamma_{te}(G) = b$?

The Forcing Total Edge Domination Number of a Graph

Definition 4.17

Let G be a connected graph and S a minimum total edge dominating set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum total edge dominating set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing total edge domination number of S, denoted by $f_{te}(S)$, is the cardinality of a minimum forcing subset of S. The forcing
The total edge domination number of a graph

total edge domination number of G, denoted by $f_{te}(G)$, is $f_{te}(G) = \min \left\{ f_{te}(S) \right\}$, where the minimum is taken over all minimum total edge dominating sets S in G.

Example 4.18

For the graph G given in Figure 4.5, $S = \{v_4v_5, v_5v_2\}$ is the unique minimum total edge dominating set of G so that $f_{te}(G) = 0$ and for the graph G given in Figure 4.6, $S_1 = \{v_3v_5, v_2v_3, v_3v_4\}$, $S_2 = \{v_3v_5, v_2v_3, v_1v_2\}$ and $S_3 = \{v_3v_5, v_3v_4, v_1v_4\}$ are the only three minimum total edge dominating sets of G such that $f_{te}(S_1) = 2$ and $f_{te}(S_2) = f_{te}(S_3) = 1$ so that $f_{te}(G) = 1$.

![Figure 4.5](image1)

![Figure 4.6](image2)
The next theorem follows immediately from the definition of the total edge domination number and the forcing total edge domination number of a connected graph G.

Theorem 4.19

For every connected graph G, $0 \leq f_{yte}(G) \leq \gamma_{te}(G)$.

Remark 4.20

The bounds in Theorem 4.19 are sharp. For the graph G given in Figure 4.5, $f_{yte}(G) = 0$ and for the graph $G = K_n$, $f_{yte}(G) = \gamma_{te}(G) = 2$. Also, all the inequalities in Theorem 4.19 are strict. For the graph G given in Figure 4.6, $f_{yte}(G) = 1$ and $\gamma_{te}(G) = 3$. Thus $0 < f_{yte}(G) < \gamma_{te}(G)$.

Theorem 4.21

Let G be a connected graph. Then

(a) $f_{yte}(G) = 0$ if and only if G has a unique minimum total edge dominating set.

(b) $f_{yte}(G) = 1$ if and only if G has at least two minimum total edge dominating sets, one of which is a unique minimum total edge dominating set containing one of its elements, and

(c) $f_{yte}(G) = \gamma_{te}(G)$ if and only if no minimum total edge dominating set of G is the unique minimum total edge dominating set containing any of its proper subsets.
Proof

(a) Let \(f_{\gamma_{te}}(G) = 0 \). Then, by definition, \(f_{\gamma_{te}}(S) = 0 \) for some minimum total edge dominating set \(S \) of \(G \) so that the empty set \(\emptyset \) is the minimum forcing subset for \(S \). Since the empty set \(\emptyset \) is a subset of every set, it follows that \(S \) is the unique minimum total edge dominating set of \(G \). The converse is clear.

(b) Let \(f_{\gamma_{te}}(G) = 1 \). Then by part (a), \(G \) has at least two minimum total edge dominating sets. Also, since \(f_{\gamma_{te}}(G) = 1 \), there is a singleton subset \(T \) of a minimum total edge dominating set \(S \) of \(G \) such that \(T \) is not a subset of any other minimum total edge dominating set of \(G \). Thus \(S \) is the unique minimum total edge dominating set containing one of its elements. The converse is clear.

(c) Let \(f_{\gamma_{te}}(G) = \gamma_{te}(G) \). Then \(f_{\gamma_{te}}(S) = \gamma_{te}(G) \) for every minimum total edge dominating set \(S \) in \(G \). Since \(m \geq 2 \), \(\gamma_{te}(G) \geq 2 \) and hence \(f_{\gamma_{te}}(G) \geq 2 \). Then by part (a), \(G \) has at least two minimum total edge dominating sets and so the empty set \(\emptyset \) is not a forcing subset for any minimum total edge dominating set of \(G \). Since \(f_{\gamma_{te}}(S) = \gamma_{te}(G) \), no proper subset of \(S \) is a forcing subset of \(S \). Thus no minimum total edge dominating set of \(G \) is the unique minimum total edge dominating set containing any of its proper subsets. Conversely, the data implies that \(G \) contains more than one minimum total edge dominating set and no subset of any minimum total edge dominating sets \(S \) other than \(S \) is a forcing subset for \(S \). Hence it follows that \(f_{\gamma_{te}}(G) = \gamma_{te}(G) \).
Definition 4.22

An edge e of a connected graph G is said to be a total edge dominating edge of G if e belongs to every minimum total edge dominating set of G. If G has a unique minimum total edge dominating set S, then every edge of S is a total edge dominating edge of G.

Example 4.23

For the graph G given in Figure 4.5, $S = \{v_4v_5, v_5v_2\}$ is the unique minimum total edge dominating set of G so that both the edges in S are total edge dominating edges of G. For the graph G given in Figure 4.6, an edge v_3v_5 belongs to every minimum total edge dominating set of G. Therefore v_3v_5 is the unique total edge dominating edge of G.

Theorem 4.24

Let G be a connected graph and let \mathcal{I} be the set of relative complements of the minimum forcing subsets in their respective minimum total edge dominating sets in G. Then $\bigcap_{F \in \mathcal{I}} F$ is the set of total edge dominating edges of G.

Corollary 4.25

Let G be a connected graph and S a minimum total edge dominating set of G. Then no total edge dominating edge of G belongs to any minimum forcing set of S.

Theorem 4.26

Let G be a connected graph and X be the set of all total edge dominating edges of G. Then $f_{\gamma_{te}}(G) \leq \gamma_{te}(G) - |X|$.
Remark 4.27

The bound in Theorem 4.26 is sharp. For the graph G given in Figure 4.5, $\gamma_{te}(G) = 2$, $|X| = 2$, $f_{\gamma_{te}}(G) = 0$ and $\gamma_{te}(G) - |X| = 0$ so that $f_{\gamma_{te}}(G) = \gamma_{t}(G) - |X|$. Also the bound in Theorem 4.26 is strict. For the graph G given in Figure 4.6, $\gamma_{te}(G) = 3$, $|X| = 1$, $f_{\gamma_{te}}(G) = 1$ and $\gamma_{te}(G) - |X| = 2$ so that $f_{\gamma_{t}}(G) < \gamma_{t}(G) - |W|$.

In the following we determine the forcing total edge domination number of some standard graphs.

Theorem 4.28

For any graph $G = P_n (n \geq 3)$, $f_{\gamma_{te}}(G) = \begin{cases} 0 & \text{if } n \equiv 1(\text{mod } 4) \text{and } n \neq 3 \\ 2 & \text{if } n \equiv 3(\text{mod } 4) \\ 1 & \text{if } n \text{ is even and } n \neq 6 \end{cases}$

Proof

Let $E(P_n)$ be $\{v_1v_2, v_2v_3, ..., v_{n-1}v_n\}$.

Case 1. n is odd.

Subcase i. Let $n = 3$.

Then $S = \{v_1v_2, v_2v_3\}$ is the unique minimum total edge dominating set of G, so that $f_{\gamma_{te}}(G) = 0$.

Subcase ii. Let $n \equiv 3(\text{mod } 4)$.

Let $n = 4k + 3$, $k \geq 1$. Let S be any γ_{te}-set of G. Then it is easily verified that any singleton subset of S is a subset of another γ_{te}-set of G and so $f_{\gamma_{te}}(G) \geq 1$. Now
Chapter 4 The total edge domination number of a graph

\(S_1 = \{v_1v_2, v_2v_3, v_3v_6, v_6v_7, v_9v_{10}, \ldots, v_{4k+1}v_{4k+2}, v_{4k+2}v_{4k+3}\} \) is a \(\gamma_{te} \)-set of \(G \). \(S_1 \) is the unique \(\gamma_{te} \)-set of \(G \) containing \(\{v_1v_2, v_{4k+2}v_{4k+3}\} \) so that \(f_{\gamma_{te}}(G) = 2 \).

Subcase iii. Let \(n \equiv 1(\text{mod} \ 4) \).

Let \(n = 4k + 1, \ k \geq 1 \). Then \(S = \{v_2v_3, v_3v_4, v_6v_7, \ldots, v_{4k-1}v_{4k}, v_{4k}v_{4k+1}\} \) is the unique minimum total edge dominating set of \(G \), so that \(f_{\gamma_{te}}(G) = 0 \).

Case 2. \(n \) is even.

Subcase i. Let \(n = 6 \).

Then \(S = \{v_2v_3, v_3v_4, v_4v_5\} \) is the unique \(\gamma_{te} \)-set of \(G \), so that \(f_{\gamma_{te}}(G) = 0 \).

Subcase ii. Let \(n \equiv 0(\text{mod} \ 4) \).

Let \(n = 4k, \ k \geq 1 \). Then \(S = \{v_1v_2, v_2v_3, v_3v_4, v_6v_7, \ldots, v_{4k-3}v_{4k-2}, v_{4k-2}v_{4k-1}\} \) is the unique \(\gamma_{te} \)-set of \(G \) containing \(\{v_1v_2\} \), so that \(f_{\gamma_{te}}(G) = 1 \).

Subcase iii. Let \(n \equiv 2(\text{mod} \ 4) \).

Let \(n = 4k + 2, \ k \geq 2 \). Then \(S = \{v_2v_3, v_3v_4, v_6v_7, v_7v_8, \ldots, v_{4k-2}v_{4k-1}, v_{4k-1}v_{4k}, v_{4k}v_{4k+1}\} \) is the unique \(\gamma_{te} \)-set of \(G \) containing \(\{v_{4k-2}v_{4k-1}\} \) so that \(f_{\gamma_{te}}(G) = 1 \).

\[\text{Theorem 4.29} \]

For any graph \(G = C_n, (n \geq 3) \), \(f_{\gamma_{te}}(G) = \begin{cases} 4 & \text{if } n \equiv 2(\text{mod} \ 4) \\ 2 & \text{otherwise} \end{cases} \)

Proof

Let \(C_n \) be \(v_1, v_2, \ldots, v_n, v_1 \).
Case 1. \(n \) is odd.

Subcase i. Let \(n + 1 \equiv 0 \pmod{4} \).

Let \(n = 4k - 1, \ k \geq 1 \). Let \(S \) be any \(\gamma_{te} \)-set of \(G \). Then it is easily verified that any singleton subset of \(S \) is a subset of another \(\gamma_{te} \)-set of \(G \) and so \(f_{\gamma_{te}}(G) \geq 1 \). Now \(S_1 = \{v_1v_2, v_2v_3, v_3v_6, v_6v_7, v_9v_{10}, v_{10}v_{11}, \ldots, v_{4k-3}v_{4k-2}, v_{4k-2}v_{4k-1}\} \) is the unique \(\gamma_{te} \)-set of \(G \) containing \(\{v_1v_2, v_{4k-2}v_{4k-1}\} \) so that \(f_{\gamma_{te}}(G) = 2 \).

Subcase ii. Let \(n - 1 \equiv 0 \pmod{4} \).

Let \(n = 4k + 1, \ k \geq 1 \). Let \(S \) be any \(\gamma_{te} \)-set of \(G \). Then it is easily verified that any singleton subset of \(S \) is a subset of another \(\gamma_{te} \)-set of \(G \) and so \(f_{\gamma_{te}}(G) \geq 1 \). Now \(S_1 = \{v_1v_2, v_2v_3, v_3v_6, v_6v_7, v_9v_{10}, v_{10}v_{11}, \ldots, v_{4k-3}v_{4k-2}, v_{4k-2}v_{4k-1}, v_{4k-1}v_{4k}\} \) is the unique \(\gamma_{te} \)-set of \(G \) containing \(\{v_{4k-3}v_{4k-2}, v_{4k-1}v_{4k}\} \) so that \(f_{\gamma_{te}}(G) = 2 \).

Case 2. \(n \) is even.

Subcase i. Let \(n \equiv 0 \pmod{4} \).

Let \(n = 4k, \ k \geq 1 \). Let \(S \) be any \(\gamma_{te} \)-set of \(G \). Then it is easily verified that any singleton subset of \(S \) is a subset of another \(\gamma_{te} \)-set of \(G \) and so \(f_{\gamma_{te}}(G) \geq 1 \). Now \(S_1 = \{v_1v_2, v_2v_3, v_3v_5v_6, v_6v_7, v_9v_{10}, v_{10}v_{11}, \ldots, v_{4k-3}v_{4k-2}, v_{4k-2}v_{4k-1}\} \) is the unique \(\gamma_{te} \)-set of \(G \) containing \(\{v_1v_2, v_2v_3\} \) so that \(f_{\gamma_{te}}(G) = 2 \).

Subcase ii. Let \(n \equiv 2 \pmod{4} \).

Let \(n = 4k + 2, \ k \geq 1 \). Let \(S \) be any \(\gamma_{te} \)-set of \(G \). Then it is easily verified that any one element or two element or three element subset of \(S \) is a subset of another \(\gamma_{te} \)-set of \(G \). Now \(S_1 = \{v_1v_2, v_2v_3, v_3v_4, v_4v_5, v_7v_8, v_8v_9, v_{11}v_{12}, v_{12}v_{13}, \ldots, v_{4k-1}v_{4k}\} \).
$v_{4k}v_{4k+1}$ is the unique γ_{te}-set of G containing \{$v_1v_2, v_2v_3, v_3v_4, v_4v_5$\} so that $f_{\gamma_{te}}(G) = 4$.

Theorem 4.30

For the complete graph $G = K_n$ ($n \geq 3$), $f_{\gamma_{te}}(G) = 2$.

Proof

Since $n \geq 3$, there exists at least two γ_{te}-sets of G so that $f_{\gamma_{te}}(G) \geq 1$. Let S be any γ_{te}-set of G such that $|S| = 2$. It is easily verified that any singleton subset of S is a subset of another γ_{te}-set of G, so that $f_{\gamma_{te}}(G) = 2$.

In view of Theorem 4.19, we have the following realization result.

Theorem 4.31

For every pair a, b of integers with $0 \leq a < b$ and $b > a + 1$, there exists a connected graph G such that $f_{\gamma_{te}}(G) = a$ and $\gamma_{te}(G) = a + b$.

Proof

Let $P_i: u_i, v_i, w_i, x_i$ ($1 \leq i \leq a$) be a path of order 4 and $P'_i: y_i, z_i$ ($1 \leq i \leq b - a$) be a path of order 2. Let G be a graph obtained from P_i ($1 \leq i \leq a$) and P'_i ($1 \leq i \leq b - a$) by adding a new vertex x, joining x with each u_i ($1 \leq i \leq a$) and each x_i ($1 \leq i \leq a$) and also join x with each y_i ($1 \leq i \leq b - a$). The graph G is shown in Figure 4.7.
First we claim that $\gamma_{te}(G) = a + b$. Let $H_i = \{u_iv_i, x_iw_i\}$ ($1 \leq i \leq a$). Let $X = \{xy_1, xy_2, \ldots, xy_{b-a}, v_1w_1, v_2w_2, \ldots, v_aw_a\}$. It is easily observed that X is a subset of every minimum total edge dominating set of G and so $\gamma_{te}(G) \geq b - a + a = b$. Also it is easily seen that every total edge dominating set of G contains at least one element of H_i ($1 \leq i \leq a$) and so $\gamma_{te}(G) \geq a + b$. Now $S = X \cup \{u_1v_1, u_2v_2, \ldots, u_aw_a\}$ is a total edge dominating set of G so that $\gamma_{te}(G) = a + b$.

Next we show that $f_{\gamma_{te}}(G) = a$. By Theorem 4.26, $f_{\gamma_{te}}(G) \leq \gamma_{te}(G) - |X| = a + b - b = a$. Now since $\gamma_{te}(G) = a + b$ and every minimum total edge dominating set of G contains X, it is easily seen that every γ_{te}-set of G is of the form $S = X \cup \{c_1d_1, c_2d_2, \ldots, c_ad_a\}$, where $c_id_i \in H_i$ ($1 \leq i \leq a$). Let T be any proper subset of S with $|T| < a$. Then there exist an edge c_jd_j ($1 \leq j \leq a$) such that $c_jd_j \notin T$. Let e_jf_j be an edge of H_j distinct from c_jd_j. Then $S_1 = \left(S - \{c_jd_j\}\right) \cup$
\(\{e_jf_j\} \) is a \(\gamma_{te} \)-set of \(G \) properly containing \(T \). Therefore \(T \) is not a forcing subset of \(S \). This is true for all \(\gamma_{te} \)-sets of \(G \). Hence it follows that \(f_{\gamma_{te}}(G) = a \). \hfill \blacksquare

In the following the forcing edge domination number and the forcing total edge domination number of a graph \(G \) are related.

Theorem 4.32

For any integer \(a \geq 2 \), there exists a connected graph \(G \) such that \(f_{\gamma_{te}}(G) = f_{\gamma_{te}}(G) = a \).

Proof

Let \(P: x, y \) and \(P_i: u_i, v_i \ (1 \leq i \leq a) \) be paths of order 2. Let \(G \) be a graph obtained from \(P_i \ (1 \leq i \leq a) \) and \(P \) by joining \(x \) with each \(u_i \ (1 \leq i \leq a) \) and \(y \) with each \(v_i \ (1 \leq i \leq a) \). The graph \(G \) is shown in Figure 4.8.

![Figure 4.8](image)

First we show that \(\gamma_e(G) = a + 1 \). It is easily observed that an edge \(xy \) belongs to every minimum edge dominating set of \(G \) and so \(\gamma_e(G) \geq 1 \). Let \(H_i = \{xu_i, u_iv_i, yv_i\} \ (1 \leq i \leq a) \). Also it is easily seen that every edge dominating set of \(G \) contains at least one edge of \(H_i \ (1 \leq i \leq a) \) and so \(\gamma_e(G) \geq a + 1 \). Now
Chapter 4
The total edge domination number of a graph

$S = \{xy\} \cup \{u_1v_1, u_2v_2, ..., u_av_a\}$ is an edge dominating set of G so that $\gamma_e(G) = a + 1$.

Next we show that $f_{\gamma_e}(G) = a$. By Theorem 1.57, $f_{\gamma_e}(G) \leq \gamma_e(G) - \{xy\} = a + 1 - 1 = a$. Now since $\gamma_e(G) = a + 1$ and every minimum edge dominating set of G contains $\{xy\}$, it is easily seen that every γ_e-set of G is of the form $S = \{xy\} \cup \{p_1q_1, p_2q_2, ..., p_aq_a\}$, where $p_iq_i \in H_i \ (1 \leq i \leq a)$. Let T be any proper subset of S with $|T| < a$. Then there exists an edge $p_jq_j \ (1 \leq j \leq a)$ such that $p_jq_j \notin T$. Let r_js_j be an edge of H_j distinct from p_jq_j. Then $S_1 = \{(S - \{p_jq_j\}) \cup \{r_js_j\}\}$ is a γ_e-set of G properly containing T. Therefore T is not a forcing subset of G. Hence it follows that $f_{\gamma_e}(G) = a$.

Next we claim that $\gamma_{te}(G) = a + 1$. Let $G_i = \{xu_i, yv_i\} \ (1 \leq i \leq a)$. It is easily seen that an edge xy belongs to every minimum total edge dominating set of G and so $\gamma_{te}(G) \geq 1$. Also every total edge dominating set of G contains at least one element of $G_i \ (1 \leq i \leq a)$ and so $\gamma_{te}(G) \geq a + 1$. Now $S = \{xy\} \cup \{yv_1, yv_2, ..., yv_a\}$ is a total edge dominating set of G so that $\gamma_{te}(G) = a + 1$.

Next we show that $f_{\gamma_{te}}(G) = a$. By Theorem 4.26, $f_{\gamma_{te}}(G) \leq \gamma_{te}(G) - \{xy\} = a + 1 - 1 = a$. Now since $\gamma_{te}(G) = a + 1$ and every minimum total edge dominating set of G contains $\{xy\}$ and at least one edge of $G_i \ (1 \leq i \leq a)$, it is easily seen that every γ_{te}-set of G is of the form $S = \{xy\} \cup \{xc_1, xc_2, ..., xc_a\}$, where $xc_i \in G_i \ (1 \leq i \leq a)$. Let T be any proper subset of S with $|T| < a$. Then there exists an edge $xc_j \ (1 \leq j \leq a)$ such that $xc_j \notin T$. Let xd_j be an edge of G_j distinct
from xcj. Then $S_1 = \left((S - \{xcj\}) \cup \{xdj\} \right)$ is a γ_e-set of G properly containing T. Therefore T is not a forcing subset of S. Hence it follows that $f_{te}(G) = a$.

Theorem 4.33

For any integer $a \geq 2$, there exists a connected graph G such that $f_{te}(G) = 0$ and $f_{te}(G) = a$.

Proof

Let $P_i: u_i, v_i \ (1 \leq i \leq a)$ be a path of order 2. Let G be a graph obtained from P_i by adding new vertex x and joining x with each $u_i \ (1 \leq i \leq a)$. The graph G is shown in Figure 4.9.

![Figure 4.9](image)

First we show that $\gamma_e(G) = a$. Let $Q_i = \{xu_i, u_iv_i\} \ (1 \leq i \leq a)$. It is easily seen that every edge dominating set of G contains at least one edge of $Q_i(1 \leq i \leq a)$ and so $\gamma_e(G) \geq a$. Now $S = \{u_1v_1, u_2v_2, ..., u_av_a\}$ is an edge dominating set of G so that $\gamma_e(G) = a$.

Next we show that $f_{te}(G) = a$. By Theorem 1.57, $f_{te}(G) \leq \gamma_e(G) = a$. It is easily seen that every γ_e-set of G is of the form $S = \{r_1s_1, r_2s_2, ..., r_as_a\}$, where
Chapter 4

The total edge domination number of a graph

Let \(r_i s_i \in Q_i \) \((1 \leq i \leq a)\). Let \(T \) be any proper subset of \(S \) with \(|T| < a\). Then there exists an edge \(r_j s_j \) \((1 \leq j \leq a)\) such that \(r_j s_j \notin T \). Let \(g_j h_j \) be an edge of \(Q_j \) distinct from \(r_j s_j \). Then \(S_1 = \{(S - \{r_j s_j\}) \cup \{g_j h_j\}\} \) is a \(\gamma_e \)-set of \(G \) properly containing \(T \).

Therefore \(T \) is not a forcing subset of \(S \). This is true for all \(\gamma_e \)-sets of \(G \). Hence it follows that \(f_{\gamma_e}(G) = a \).

Next we claim that \(\gamma_{te}(G) = a \). Let \(X = \{xu_1, xu_2, ..., xu_a\} \). It is easily seen that \(X \) is a subset of every minimum total edge dominating set of \(G \) and so \(\gamma_{te}(G) \geq a \). Now \(S = \{xu_1, xu_2, ..., xu_a\} \) is a \(\gamma_e \)-set of \(G \) so that \(\gamma_{te}(G) = a \).

Next we show that \(f_{\gamma_{te}}(G) = 0 \). It is easily observed that \(S = \{xu_1, xu_2, ..., xu_a\} \) is the unique \(\gamma_{te} \)-set of \(G \). Hence by Theorem 4.21 (a), \(f_{\gamma_{te}}(G) = 0 \).

\[\text{Theorem 4.34} \]

For any integer \(a \geq 2 \), there exists a connected graph \(G \) such that \(f_{\gamma_{te}}(G) = a \) and \(f_{\gamma_e}(G) = 0 \).

\[\text{Proof} \]

Let \(C_i = u_i, v_i, w_i, u_i \) \((1 \leq i \leq a)\) be a copy of cycle with three vertices. Let \(G \) be a graph obtained from \(C_i \) \((1 \leq i \leq a)\) by adding two vertices \(x \) and \(y \), joining \(x \) with each \(u_i \) \((1 \leq i \leq a)\) and also join \(y \) with each \(v_i \) \((1 \leq i \leq a)\). The graph \(G \) is shown in Figure 4.10.
First we show that $\gamma_e(G) = a$. Let $X = \{u_1v_1, u_2v_2, \ldots, u_av_a\}$. It is easily seen that X is a subset of every minimum edge dominating set of G and so $\gamma_e(G) \geq a$. But it is clear that $S = X$ is an edge dominating set of G, so that $\gamma_e(G) = a$.

Next we show that $f_{\gamma_e}(G) = 0$. Since $S = X$ is the unique minimum edge dominating set of G and $\gamma_e(G) = a$ and hence by Theorem 1.56 (a), $f_{\gamma_e}(G) = 0$.

Next we claim that $\gamma_{te}(G) = 2a$. Let $X = \{u_1v_1, u_2v_2, \ldots, u_av_a\}$ and $H_i = \{xu_i, yv_i, u_iv_i, v_iw_i\}$ (1 ≤ i ≤ a). It is easily seen that X is a subset of every minimum total edge dominating set of G and so $\gamma_{te}(G) \geq a$. Also it is easily seen that every total edge dominating set of G contains at least one element of H_i (1 ≤ i ≤ a) and so $\gamma_{te}(G) \geq 2a$. Now $S = X \cup \{xu_1, xu_2, \ldots, xu_a\}$ is a total edge dominating set of G so that $\gamma_{te}(G) = 2a$.

Figure 4.10
Next we show that $f_{\gamma_{te}}(G) = a$. By Theorem 4.26, $f_{\gamma_{te}}(G) \leq \gamma_{te}(G) - X = 2a - a = a$. Since $\gamma_{te}(G) = 2a$ and every minimum total edge dominating set of G contains X and at least one element of H_i ($1 \leq i \leq a$), it is easily seen that every γ_{te}-set of G is of the form $S = X \cup \{c_1d_1, c_2d_2, \ldots, c_ad_a\}$, where $c_id_i \in H_i$ ($1 \leq i \leq a$).

Let T be any proper subset of S with $|T| < a$. Then there exists an edge c_jd_j ($1 \leq j \leq a$) such that $c_jd_j \notin T$. Let e_jf_j be an edge of H_j distinct from c_jd_j. Then $S_1 = \{ (S - \{c_jd_j\}) \cup \{e_jf_j\} \}$ is a γ_{te}-set of G properly containing T. Therefore T is not a forcing subset of S. Hence it follows that $f_{\gamma_{te}}(G) = a$.

Theorem 4.35

For every pair a, b of integers with $0 \leq a \leq b$, there exists a connected graph G such that $f_{\gamma_{te}}(G) = a$ and $f_{\gamma_e}(G) = b$.

Proof

Let $P: x, y, P_i: u_i, v_i$ ($1 \leq i \leq a$) and $Q_i: r_i, s_i$ ($1 \leq i \leq b - a$) be paths of order 2. Let H be a graph obtained from P and P_i ($1 \leq i \leq a$) by joining x with each u_i ($1 \leq i \leq a$) and y with each v_i ($1 \leq i \leq a$). Let H' be a graph obtained from Q_i ($1 \leq i \leq b - a$) by adding new vertex z and joining z with each r_i ($1 \leq i \leq b - a$). Let G be a graph obtained from H and H' by joining x and z. The graph G is shown in Figure 4.11.
First we claim that $\gamma_e(G) = b + 1$. Let $H_i = \{xu_i, yv_i, u_i v_i\} (1 \leq i \leq a)$ and $R_i = \{zr_i, r_i s_i\} (1 \leq i \leq b - a)$. It is easily observed that an edge xy belongs to every minimum edge dominating set of G and so $\gamma_e(G) \geq 1$. Also it is easily seen that every edge dominating set of G contains at least one edge of $R_i (1 \leq i \leq b - a)$ and at least one edge of $R_i (1 \leq i \leq a)$ and so $\gamma_e(G) \geq 1 + a + b - a = b + 1$.

Now $S = \{xy\} \cup \{u_1 v_1, u_2 v_2, \ldots, u_a v_a\} \cup \{r_1 s_1, r_2 s_2, \ldots, r_{b-a} s_{b-a}\}$ is an edge dominating set of G so that $\gamma_e(G) = b + 1$.

Next we show that $f_{\gamma_e}(G) = b$. By Theorem 1.57, $f_{\gamma_e}(G) \leq \gamma_e(G) - \{xy\} = b + 1 - 1 = b$. Since $\gamma_e(G) = b + 1$ and every edge dominating set of G contains $\{xy\}$, it is easily seen that every γ_e-set of G is of the form $S = \{xy\} \cup \{c_1 d_1, c_2 d_2, \ldots, c_a u_a\} \cup \{g_1 h_1, g_2 h_2, \ldots, g_{b-a} h_{b-a}\}$ where $c_i d_i \in H_i (1 \leq i \leq a)$ and $g_i h_i \in R_i (1 \leq i \leq b - a)$. Let T be any proper subset of S with
$|T| < b$. Then it is clear that there exists some i and j such that $T \cap H_i \cap R_j = \phi$, which shows that $f_{\gamma_e}(G) = b$.

Next we show that $\gamma_{te}(G) = b + 1$. Let $Z_i = \{xu_i, yv_i\} (1 \leq i \leq a)$ and $X = \{xy, zr_1, zr_2, \ldots, zr_{b-a}\}$. It is easily observed that X is a subset of every minimum total edge dominating set of G and so $\gamma_{te}(G) \geq b - a + 1$. Also it is easily seen that every total edge dominating set of G contains at least one edge of $Z_i (1 \leq i \leq a)$ and so $\gamma_{te}(G) \geq b - a + 1 + a$. Now $S = X \cup \{xu_1, xu_2, \ldots, xu_a\}$ is a total edge dominating set of G so that $\gamma_{te}(G) = b + 1$.

Next we claim that $f_{\gamma_{te}}(G) = a$. By Theorem 4.26, $f_{\gamma_{te}}(G) \leq \gamma_{te}(G) - |X| = b + 1 - (b - a + 1) = a$. Now since $\gamma_{te}(G) = b + 1$ and every minimum total edge dominating set of G contains X, it is easily seen that every γ_{te}-set of G is of the form $S = X \cup \{xc_1, xc_2, \ldots, xc_a\}$ where $xc_i \in Z_i (1 \leq i \leq a)$. Let T be any proper subset of S with $|T| < a$. Then there exists an edge $xc_j (1 \leq j \leq a)$ such that $xc_j \notin T$. Let xd_j be an edge of Z_j distinct from xc_j. Then $S_1 = \{(S - \{xc_j\}) \cup \{xd_j\}\}$ is a γ_{te}-set of G properly containing T. Therefore T is not a forcing subset of S. This is true for all γ_{te}-sets of G. Hence it follows that $f_{\gamma_{te}}(G) = a$.

Theorem 4.36

For every pair a, b of integers with $0 \leq a \leq b$ there exists a connected graph G such that $f_{\gamma_e}(G) = a$ and $f_{\gamma_{te}}(G) = b$.

94
Chapter 4
The total edge domination number of a graph

Proof

Let \(P: x, y \) and \(P_i: u_i, v_i \) \((1 \leq i \leq a)\) be paths of order 2. Let \(H \) be a graph obtained from \(P \) and \(P_i \) \((1 \leq i \leq a)\) by joining \(x \) with each \(u_i \) \((1 \leq i \leq a)\) and \(y \) with each \(v_i \) \((1 \leq i \leq a)\). Let \(C_i: p_i, q_i, r_i, p_i \) \((1 \leq i \leq b - a)\) be a copy of cycle with three vertices. Let \(H' \) be a graph obtained from \(C_i \) \((1 \leq i \leq b - a)\) by adding two vertices \(s \) and \(t \), joining \(s \) with each \(p_i \) \((1 \leq i \leq b - a)\) and \(t \) with each \(r_i \) \((1 \leq i \leq b - a)\). Let \(G \) be a graph obtained from \(H \) and \(H' \) by joining \(q_1 \) with \(y \). The graph \(G \) is shown in Figure 4.12.

![Graph Diagram](diagram.png)

Figure 4.12

First we claim that \(\gamma_e(G) = b + 1 \). Let \(X = \{xy, p_1r_1, p_2r_2, \ldots, p_{b-a}r_{b-a}\} \) and \(H_i = \{xu_i, u_iv_i, yv_i\} \((1 \leq i \leq a)\)\). It is easily observed that \(X \) is a subset of
every minimum edge dominating set of G and so $\gamma_e(G) \geq b - a + 1$. Also it is easily seen that every edge dominating set of G contains at least one edge of H_i ($1 \leq i \leq a$) and so $\gamma_e(G) \geq b - a + 1 + a = b + 1$. Now $S = X \cup \{u_1v_1, u_2v_2, \ldots, u_av_a\}$ is an edge dominating set of G so that $\gamma_e(G) = b + 1$.

Next we show that $f_{\gamma_e}(G) = a$. By Theorem 1.57, $f_{\gamma_e}(G) \leq \gamma_e(G) - |X| = b + 1 - (b - a + 1) = a$. Now since $\gamma_e(G) = b + 1$ and every minimum edge dominating set of G contains X, it is easily seen that every γ_e-set of G is of the form $S = X \cup \{e_1f_1, e_2f_2, \ldots, e_afa\}$ where $e_if_i \in H_i$ ($1 \leq i \leq a$). Let T be any proper subset of T with $|T| < a$. Then there exists an edge e_jf_j ($1 \leq i \leq a$) such that $e_jf_j \notin T$. Let g_jh_j be an edge of H_j distinct from e_jf_j. Then $S_1 = \{(S - \{e_jf_j\}) \cup \{g_jh_j\}\}$ is a γ_e-set of G properly containing T. Therefore T is not a forcing subset of S. This is true for all γ_e-sets of G. Hence it follows that $f_{\gamma_e}(G) = a$.

Next we claim that $\gamma_{te}(G) = 2b - a + 1$. Let $R_i = \{xu_i, yv_i\}$ ($1 \leq i \leq a$) and $S_i = \{sp_i, p_iq_i, q_ir_i, tr_i\}$ ($1 \leq i \leq b - a$). Let $X = \{xy, p_1r_1, p_2r_2, \ldots, p_{b - a}r_{b - a}\}$. It is easily observed that X is a subset of every minimum total edge dominating set of G and so $\gamma_{te}(G) \geq b - a + 1$. Also it is easily seen that every total edge dominating set of G contains at least one edge of R_i ($1 \leq i \leq a$) and S_i ($1 \leq i \leq b - a$) and so $\gamma_{te}(G) \geq b - a + 1 + a + b - a = 2b - a + 1$. Now $S = X \cup \{xu_1, xu_2, \ldots, xu_a\} \cup \{p_1q_1, p_2q_2, \ldots, p_{b - a}q_{b - a}\}$ is a total edge dominating set of G so that $\gamma_{te}(G) = 2b - a + 1$.

Next we show that $f_{\gamma_{te}}(G) = b$. By Theorem 4.26, $f_{\gamma_{te}}(G) \leq \gamma_{te}(G) - |X| = (2b - a + 1) - (b - a + 1) = b$. Since $\gamma_{te}(G) = 2b - a + 1$ and every
minimum total edge dominating set of \(G \) contains \(X \), it is easily seen that every \(\gamma_{te} \)-set of \(G \) is of the form \(S = X \cup \{xc_1, xc_2, \ldots, xc_a\} \cup \{g_1h_1, g_2h_2, \ldots, g_{b-a}h_{b-a}\} \) where \(xc_i \in R_i \) (1 ≤ \(i \) ≤ \(a \)) and \(g_ih_i \in S_i \) (1 ≤ \(i \) ≤ \(b-a \)). Let \(T \) be any proper subset of \(S \) with \(|T| < b \). Then it is clear that there exists some \(i \) and \(j \) such that \(T \cap R_i \cap S_j = \phi \), which shows that \(f_{\gamma_{te}}(G) = b \).

Open Problem 5

For every four positive integers \(a, b, c, d \) with 2 ≤ \(a \) ≤ \(b \), \(c \geq 0 \) and \(d \geq 0 \), does there exist a connected graph \(G \) with \(\gamma_e(G) = a \), \(\gamma_{te}(G) = b \), \(f_{\gamma_e}(G) = c \) and \(f_{\gamma_{te}}(G) = d \)?

The Upper Total Edge Domination Number of a Graph

Definition 4.37

The total edge dominating set \(S \) in a connected graph \(G \) is called a *minimal total edge dominating set* if no proper subset of \(S \) is a total edge dominating set of \(G \). The *upper total edge domination number* \(\gamma_{te}^+(G) \) of \(G \) is the maximum cardinality of a minimal total edge dominating sets of \(G \).

Example 4.38

For the graph \(G \) given in Figure 4.13, \(S_1 = \{v_1v_2, v_2v_5, v_5v_6\} \) and \(S_2 = \{v_1v_7, v_1v_2, v_2v_3\} \) are the minimum total edge dominating sets of \(G \) so that \(\gamma_{te}(G) = 3 \). The set \(S = \{v_1v_7, v_6v_7, v_2v_3, v_2v_5\} \) is a total edge dominating set of \(G \) and it is clear that no proper subset of \(S \) is the total edge dominating set of \(G \) and so \(S \) is the minimal total edge dominating set of \(G \). Also it is easily verified that no five
element or six element subset is a minimal total edge dominating set of G, it follows that $\gamma_{te}^+(G) = 4$.

![Graph](image)

Remark 4.39

Every minimum total edge dominating set of G is a minimal total edge dominating set of G and the converse is not true. For the graph G given in Figure 4.13, $S = \{v_1v_7, v_6v_7, v_2v_3, v_2v_5\}$ is a minimal total edge dominating set but not a minimum total edge dominating set of G.

Theorem 4.40

For a connected graph G, $2 \leq \gamma_{te}(G) \leq \gamma_{te}^+(G) \leq m$.

Proof

We know that any total edge dominating set needs at least two edges and so $\gamma_{te}(G) \geq 2$. Since every minimal total edge dominating set is also the total edge dominating set, $\gamma_{te}(G) \leq \gamma_{te}^+(G)$. Also, since $E(G)$ is the total edge dominating set of G, it is clear that $\gamma_{te}^+(G) \leq m$. Thus $2 \leq \gamma_{te}(G) \leq \gamma_{te}^+(G) \leq m$.

98
Remark 4.41

The bounds in Theorem 4.40 are sharp. For any graph $G = P_3$, $m = 2$, $\gamma_{te}(G) = 2$ and $\gamma_{te}^+(G) = 2$. Therefore $2 = \gamma_{te}(G) = \gamma_{te}^+(G) = m$. Also, all the inequalities in Theorem 4.40 are strict. For the graph G given in Figure 4.13, $\gamma_{te}(G) = 3$, $\gamma_{te}^+(G) = 4$ and $m = 7$ so that $2 < \gamma_{te}(G) < \gamma_{te}^+(G) < m$.

Theorem 4.42

For a connected graph G, $\gamma_{te}(G) = m$ if and only if $\gamma_{te}^+(G) = m$.

Proof

Let $\gamma_{te}^+(G) = m$. Then $S = E(G)$ is the unique minimal total edge dominating set of G. Since no proper subset of S is the total edge dominating set, it is clear that S is the unique minimum total edge dominating set of G and so $\gamma_{te}(G) = m$. The converse follows from Theorem 4.42.

Theorem 4.43

For complete graph $G = K_n$ ($n \geq 3$), $\gamma_{te}^+(G) = 2$.

Proof

Let S be any set of two adjacent edges of K_n. Since each edge of K_n is incident with an edge of S, it follows that S is a total edge dominating set of G so that $\gamma_{te}(G) = 2$. We show that $\gamma_{te}^+(G) = 2$. Suppose that $\gamma_{te}^+(G) \geq 3$. Then there exists a total edge dominating set S_1 such that $|S_1| \geq 3$. It is clear that S_1 contains two adjacent edges say e_1, e_2. Then $S_1' = \{e_1, e_2\}$ is a total edge dominating set of G, which is a contradiction. Thus $\gamma_{te}^+(G) = 2$.

99
Theorem 4.44

For complete bipartite graph $G = K_{m,n}$ ($m, n \geq 2$), $\gamma_{te}^+(G) = 2$.

Proof

Let S be any set of two adjacent edges of $K_{m,n}$. Since each edge of $K_{m,n}$ is incident with an edge of S, it follows that S is a total edge dominating set of G so that $\gamma_{te}(G) = 2$. We show that $\gamma_{te}^+(G) = 2$. Suppose $\gamma_{te}^+(G) \geq 3$. Then there exists a total edge dominating set S_1 such that $|S_1| \geq 3$. It is clear that S_1 contains two adjacent edges say e_1, e_2. Then $S_1' = \{e_1, e_2\}$ is a total edge dominating set of G, which is a contradiction. Thus $\gamma_{te}^+(G) = 2$.

Theorem 4.45

For any graph $G = K_{1,n}$ ($n \geq 2$), $\gamma_{te}^+(G) = 2$.

Proof

The proof is similar to Theorem 4.44.

In view of Theorem 4.40, we have the following realization result.

Theorem 4.46

For any integer $a \geq 1$, there exists a connected graph G such that $\gamma_{te}(G) = a + 1$ and $\gamma_{te}^+(G) = 2a$.

Proof

Let $P_i: u_i, v_i, w_i$ ($1 \leq i \leq a$) be a path of order 3 and $P: x, y$ be a path of order 2. Let G be a graph obtained from P_i ($1 \leq i \leq a$) and P by joining y with each
Chapter 4
The total edge domination number of a graph

u_i (2 ≤ i ≤ a), v_i (2 ≤ i ≤ a) and w_i (2 ≤ i ≤ a) and also join x with u_1, v_1 and w_1. The graph G is shown in Figure 4.14

![Figure 4.14](image)

First we claim that $\gamma_{te}(G) = a + 1$. It is easily observed that an edge xy belongs to every minimum total edge dominating set of G and so $\gamma_{te}(G) \geq 1$. Also it is easily seen that every minimum total edge dominating set of G contains at least one edge of each block of $G - \{x\}$ and each block of $G - \{y\}$ and so $\gamma_{te}(G) \geq a + 1$. Now $X = \{xy, xv_1, yv_2, yv_3, \ldots, yv_a\}$ is a total edge dominating set of G so that $\gamma_{te}(G) = a + 1$.

Next we show that $\gamma_{te}^+(G) = 2a$. Now $D = \{xu_1, yu_2, yu_3, \ldots, yu_a, x\, w_1, yw_2, yw_3, \ldots, yw_a\}$ is a total edge dominating set of G. We show that D is a minimal total edge dominating set of G. Let D' be any proper subset of D. Then there exists at least one edge say $e \in D$ such that $e \notin D'$. Suppose that $e = xu_i$ for some i (1 ≤ i ≤ a), then the edge xw_i (1 ≤ i ≤ a) will be isolated in (D'). Therefore D' is not a total edge dominating set of G. Now, assume that $e = xw_i$ for some
Chapter 4

The total edge domination number of a graph

$i (1 \leq i \leq a)$, then the edge $xu_i \ (1 \leq i \leq a)$ will be isolated in $\{D\}'$ and so D' is not a total edge dominating set of G. Therefore any proper subset of D is not a total edge dominating set of G. Hence D is a minimal total edge dominating set of G and so $\gamma_{te}^+(G) \geq 2a$. We show that $\gamma_{te}^+(G) = 2a$. Suppose that there exists a minimal total edge dominating set T of G such that $|T| \geq 2a + 1$. Then T contains at least three edges of block of $G - \{x\}$ or at least three edges of block of $G - \{y\}$. If T contains at least three edges of $G - \{x\}$, then deleting one edge of $G - \{x\}$ in T, results in T is a total edge dominating set of G, which is a contradiction. If T contains at least three edges of $G - \{y\}$, then deleting one edge of $G - \{y\}$ in T, results in T is a total edge dominating set of G, which is a contradiction. Hence $\gamma_{te}^+(G) = 2a$.

Open Problem 6

For every pair a, b of integers with $2 \leq a < b$, does there exists a connected graph G such that $\gamma_{te}(G) = a$ and $\gamma_{te}^+(G) = b$?