Table of Contents

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>i-ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii-v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vi-viii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x-xii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xiii-xvi</td>
</tr>
</tbody>
</table>

1. Introduction
2. Review of Literature
 Development of chemotherapeutic agents from Natural Products
 2.1 Cancer
 2.1.1 Types of Cancer
 2.1.2 Clinical features/symptoms
 2.1.3 Tumor cell markers
 2.1.4 Pathophysiology
 2.1.5 Characteristic features of cancer cells
 2.1.6 Etiology of cancer
 2.1.6.1 Predisposing factors
 2.1.6.2 Carcinogenic agents
 2.2 Role of apoptosis in cancer
 2.3 Oxidative stress and Cancer
 2.4 Genetic landmarks in cancer research
 2.5 Diagnosis of cancer
 2.6 Cancer Therapy
 2.6.1 Surgery
 2.6.2 Radiation therapy
 2.6.3 Chemotherapy
 2.7 Development of anticancer drugs
 2.7.1 Historical background
 2.7.2 Anticancer drugs acting through facilitating the apoptosis
 2.7.3 Anticancer Drug Development based on Molecular targets
 2.7.4 Anticancer drugs acting through Inhibition of metastasis
 2.7.5 Anticancer drugs acting through inhibition of angiogenesis
 2.7.6 Development of antibodies against tumor-specific antigens
 2.7.7 Role of Metabolomics and Pharmacogenetics in treatment of cancer
 2.7.8 Other anticancer agents acting through indirect mechanisms
 2.8 Process of anticancer drug development
 2.8.1 Identification of biologically active compounds
 2.8.2 Screening of biological activity and preclinical pharmacology
 2.8.3 Clinical development
 2.9 Natural products as source of therapeutic agents
 2.10 Bioassay guided drug discovery
 2.10.1 Mechanism-based assays
 2.10.2 Cell-based assays
Table of Contents

2.11 Potential Anticancer Agents obtained from Natural Products 59
2.12 References 73

3. *Dysoxylum binectariferum*
 3.1 Introduction 90
 3.2 Traditional uses 91
 3.2.2 Phytochemistry 91
 3.2.3 Pharmacology 96
 3.3 Aim and design of work 99
 3.3.1 Extraction, Fractionation, Isolation and characterization of compounds 100
 3.3.2 Synthetic scheme 102
 3.3.3 Characterization of synthesized rohitukine derivatives 104
 3.4 Biological Activity 110
 3.4.1 Anti-cancer Activity 110
 3.4.1.1 Materials and Methods 111
 3.4.1.2 Results 113
 3.4.1.3 Discussion 122
 3.4.2 Antiadipogenic Activity 123
 3.4.2.1 Materials and Methods 123
 3.4.2.2 Results 126
 3.4.2.3 Discussion 131
 3.5 References 133

4. *Xylocarpus moluccensis*
 4.1 Introduction 140
 4.2 Traditional uses 140
 4.2.2 Phytochemistry 141
 4.2.3 Pharmacology 145
 4.3 Aim and design of work 146
 4.3.1 Extraction, Fractionation, Isolation and characterization of compounds 147
 4.3.2 Biological activity 149
 4.3.2.1 Anti-Parkinsonian activity 149
 4.3.2.1.1 Materials and Methods 151
 4.3.2.1.2 Results 152
 4.3.2.1.3 Discussion 155
 4.4 References 157

5. *Rheum emodi*
 5.1 Introduction 162
 5.2 Traditional uses 162
 5.2.2 Phytochemistry 163
 5.2.3 Pharmacology 164
 5.3 Aim and design of work 165
 5.3.1 Extraction, Fractionation, Isolation and characterization of compounds 166
 5.3.2 Biological Activity 168
 5.3.2.1 Antihyperlipidemic activity 168
 5.3.2.1.1 Materials and Methods 168
 5.3.2.1.2 Results 170
 5.3.2.1.3 Discussion 174
Table of Contents

5.3.2.2 Antiulcer Activity 175
5.3.2.2.1 Materials and Methods 175
5.3.2.2.2 Results 178
5.3.2.2.3 Discussion 183
5.3.3 References 186
6. Summary 192
Annexure I Publications 203