TABLE OF CONTENTS

ACKNOWLEDGEMENTS ix
PUBLICATIONS FROM THIS Ph.D WORK xii
ABSTRACT xiv
LIST OF TABLES xxv
LIST OF FIGURES xxxiii
ABBREVIATIONS xlv
NOTATIONS xlvii

CHAPTER 1 INTRODUCTION

1.1 Definition 1
1.2 Effects of GT 2
1.3 The Basic Forms of GT - Manufacturing Systems 3
1.3.1 GT-Centre 4
1.3.2 GT-Cell (group layout system) 4
1.3.3 GT-Flow Line 6
1.4 Psychological Working Aspects of GT-Manufacturing Systems 7
1.5 A Historical Comment on GT 10
1.6 Classification of various methods of grouping machines and components 12
1.7 Need for the current Research 13
1.8 Definitions 16
1.9 The Research Problem 18
1.9.1 Introduction to Grouping Efficiency 21
1.9.1.1 Practical Implications of Grouping Efficiency Function 23
1.9.2 Introduction to Grouping Efficacy

1.9.2.1 Limitations of Grouping Efficiency

1.9.2.2 Grouping Efficacy

1.9.2.2.1 Merits of Grouping Efficacy

1.9.2.2.2 Properties and Practical Implications of Grouping Efficacy Function

1.9.3 Introduction to Kandiller's Performance Measure

1.9.4 Machine Similarity Matrix

1.10 Aim of the present Research work

1.11 Phases of the present Research work

CHAPTER 2 DESIGN OF CELLULAR MANUFACTURING SYSTEMS - A LITERATURE REVIEW

2.1 Introduction

2.2 Methods of grouping machines and components

2.2.1 Part Characteristics Approach to Part Family Formation

2.2.2 Evaluative Methods

2.2.2.1 Production Flow Analysis (PFA)

2.2.2.2 Component Flow Analysis

2.2.3 Array Sorting or Analytical Method

2.2.4 Graph Theoretic Approach

2.2.5 Mathematical Programming

2.2.6 Fuzzy Clustering Approach

2.2.7 Pattern Recognition Methods, Knowledge-based and AI-based Techniques

2.2.8 Cluster Analysis - Hierarchical Clustering

2.2.9 Cluster Analysis - Nonhierarchical Clustering
CHAPTER 3 GRAFICS AND ITS COMPARISON WITH OTHER WELL-KNOWN ALGORITHMS

3.1 Introduction 126
3.2 Notations 127
3.3 Nonhierarchical Clustering 128
3.3.1 Advantage of Nonhierarchical Clustering Methods over Hierarchical Clustering Methods 128
3.3.2 Introduction to ZODIAC (Chandrasekharan and Rajagopalan 1987) 129
3.3.3 Introduction to GRAFICS Algorithm 143
3.3.3.1 Numerical Example for GRAFICS 147
3.3.4 Comparison of GRAFICS with other well-known algorithms 154
3.3.5 Comparison of ZODIAC and GRAFICS 156
3.3.6 Need for improving GRAFICS Algorithm 161
3.4 Summary 163

CHAPTER 4 DEVELOPMENT OF MACHINE-COMPONENT CELL DESIGN ALGORITHMS

4.1 Introduction 164
4.2 Notations

4.3 Nonhierarchical Clustering Algorithms

4.3.1 Need for improving GRAFICS Algorithm

4.3.2 Algorithm 1

4.3.3 Algorithm 2

4.3.4 Numerical Examples for ALGORITHM 1

4.3.4.1 Well Structured Problem (Problem 1)

4.3.4.2 Illstructured Problem (Problem 2)

4.3.5 Numerical Example for ALGORITHM 2

4.3.5.1 Illstructured Problem (Problem 2)

4.3.6 Experimentation and Comparison of ALGORITHM 1, ALGORITHM 2, GRAFICS and ZODIAC

4.3.6.1 Comparison using Problems from the GT Literature

4.3.6.1.1 Comparison based on Grouping Efficacy

4.3.6.1.1.1 Comparison based on Grouping Efficacy Ranks

4.3.6.1.1.2 Comparison based on Frequency Distribution of Grouping Efficacy

4.3.6.1.2 Comparison based on Grouping Efficiency

4.3.6.1.2.1 Comparison based on Grouping Efficiency Ranks

4.3.6.1.2.2 Comparison based on Frequency Distribution of Grouping Efficiency

4.3.6.1.2.3 Limitations of using Problems from the GT Literature

4.3.6.2 Comparison using Randomly Generated problems

4.3.6.2.1 Comparison Based on Grouping Efficacy (Kumar and Chandrasekharan 1990)

4.3.6.2.2 Comparison based on Modified Grouping Efficiency (Kandiller 1994)

4.4 Summary and Conclusions
5.6.4 Comparison of Algorithms based on Grouping
Efficiency (Chandrasekharan and Rajagopalan 1987) 420

5.7 Summary and Conclusions 422

CHAPTER 6 INDUSTRIAL APPLICATION

6.1 Introduction 426
6.2 Notations 426
6.3 Data Collection 427
6.4 Stages of Implementation of SA Algorithm 428
6.4.1 Practical usefulness of the performance measure
namely grouping efficacy with reference to the
auto industry case 438
6.4.2 Practical usefulness of the performance measure
namely grouping efficiency with reference to the
auto industry case 439
6.4.3 Steps to Calculate Required Number of Machines
in Each Machine Type 440
6.4.4 Overtime Calculations 444
6.4.5 Cell Formations Obtained using GRAFICS and
ZODIAC Algorithms 447
6.4.5.1 Results of GRAFICS Algorithm 447
6.4.5.2 Results of ZODIAC Algorithm 447
6.4.5.3 Observations 451
6.5 Summary and Conclusions 451
CHAPTER 7 CONCLUSIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>452</td>
</tr>
<tr>
<td>7.2</td>
<td>Design and Development of Nonhierarchical Clustering Algorithms</td>
<td>453</td>
</tr>
<tr>
<td>7.3</td>
<td>Design and Development of a Simulated Annealing Algorithm</td>
<td>457</td>
</tr>
<tr>
<td>7.4</td>
<td>Practical use of the Present Research Work</td>
<td>462</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY

APPENDIX I

| A.1 | ZODIAC Algorithm | 482 |
| A.2 | GRAFICS Algorithm | 485 |

APPENDIX II

APPENDIX III

APPENDIX IV

APPENDIX V

VITA