CONTENTS

ABSTRACT i-iv

CHAPTER 1 GENERAL INTRODUCTION 1

1.1. Definition and concepts 1
1.2. Biological importance of Schiff bases 3
1.3. Schiff base transition metal complexes 4
1.4. Coordination chemistry of iron-Schiff base complexes 5
1.5. Coordination chemistry of vanadium-Schiff base complexes 10
1.6. Goal 16

CHAPTER 2 REVIEW OF LITERATURE 18

2.1. Preparation of Schiff bases 18
2.2. Complexation of Schiff bases: different routes 19
2.3. Application of Schiff bases and their metal complexes 19
 2.3.1. Catalytic activities 19
 2.3.2. Antimicrobial activities 20
 2.3.3. Antifungal activities 20
 2.3.4. Antiviral activities 21
 2.3.5. Synergistic action on insecticides 21
 2.3.6. Plant growth regulator 22
 2.3.7. Other therapeutic activities 22
 2.3.8. Antitumor and cytotoxic activities 23
 2.3.9. Polymers 23
 2.3.10. Dyes 23
2.3.11. Antifertility and enzymatic activity

2.4. Transition metal Schiff base complexes with particular reference to iron and vanadium

2.5. Complexes of macrocyclic Schiff bases

2.6. Synthetic importance of Schiff bases

CHAPTER 3 EXPERIMENTAL

3.1 Chemicals and materials

3.2 Physical measurements and equipments used

CHAPTER 4 SYNTHESIS OF LIGANDS

4.1 Synthesis of bidentate Schiff base ligands derived from Benzil (L₁ and L₂).

4.2 Synthesis of chiral mesogenic Schiff base ligands (L₃ and L₄).

4.5 Synthesis of 12-membered tetrainine macrocyclic Schiff base ligand (L₁₅ and L₁₆).

CHAPTER 5 SYNTHESIS OF COMPLEXES

5.1. Complexation of bidentate Schiff base ligands

5.1.1 Preparation of Fe(III) complexes with bidentate Schiff base ligands L₁ and L₂.

5.1.2 Preparation of VO(IV) complexes with bidentate Schiff base ligands L₁ and L₂.

5.2. Complexation of tridentate Schiff base ligands
5.2.1 Preparation of binuclear Fe(III) complexes with chiral mesogenic Schiff base ligands (L₃ and L₄). 51

5.2.2 Preparation of binuclear VO(IV) complexes with chiral mesogenic Schiff base ligands (L₃ and L₄). 52

5.2.3 Preparation of binuclear Fe(III) complex with [ONO] donor tridentate Schiff base ligands (L₅). 53

5.2.4 Preparation of binuclear VO(IV) complex with [ONO] donor tridentate Schiff base ligands (L₅). 54

5.2.5 Synthesis of mixed ligand Fe(III) complex using [Fe(L₃)Cl]₂ as starting material. 54

5.2.6 Synthesis of Fe(II) complex with [ONO] donor tridentate Schiff base ligands (L₅). 55

5.2.7 Synthesis of VO(V) complex with [ONO] donor tridentate Schiff base ligands (L₅). 56

5.2.8 Synthesis of Fe(III) complex with [ONO] donor tridentate Schiff base ligands (L₆). 56

5.2.9 Synthesis of VO(IV) complex with [ONO] donor tridentate Schiff base ligands (L₆). 56

5.2.10 Synthesis of Fe(III) complex with [ONO] donor tridentate Schiff base ligands (L₇ and L₈). 57

5.3 Complexation of tetridentate Schiff base ligands 58

5.3.1 Synthesis of mixed ligand Fe(III) complexes with [N₂O₂] donor tetridentate Schiff base ligands (L₉, L₁₁, L₁₄). 58

5.3.2 Synthesis of mixed ligand Fe(III) complexes using [Fe(L₉)(H₂O)₂]NO₃ as starting material 60
5.3.3 Synthesis of mixed ligand Fe(III) complexes using [Fe(L12)(H2O)2]NO3 as starting material 60

5.3.4 Synthesis of VO(IV) complexes with [N2O2] donor tetradeionate Schiff base ligands (L9, L11- L14). 62

5.4. Complexation of macrocyclic Schiff base ligands 64

5.4.1 Synthesis of Fe(III) complexes with 12-membered tetradeionate macrocyclic Schiff base ligand (L15 and L16). 64

5.4.2 Synthesis of VO(IV) complexes with 12-membered tetradeionate macrocyclic Schiff base ligand (L15 and L16). 64

5.5. Complexation of neutral tetradeionate Schiff bases 65

5.5.1 Synthesis of Fe(III) complex with tetradeionate Schiff base L10. 65

5.5.2 Synthesis of VO(IV) complex with tetradeionate Schiff base L10. 66

5.6. Synthesis of Fe(II) complex with tetradeionate Schiff base L9. 66

CHAPTER 6 RESULTS AND DISCUSSION 68

6.1. Synthesis 68

6.2. Elemental analysis 69

6.3. IR spectra 69

6.4. Electronic spectra 83

6.5. NMR spectra 92

6.6. Mass spectra 96

6.7. Single crystal X-ray diffraction study: Data collection and structure refinement 112