Chapter 2

Review of Literature

We review the physical phenomena observed in these attractive mesogenic materials. A survey about banana-shaped liquid crystals of different molecular structures reported in the literature in quest for chirality in these achiral molecules is discussed. Then a variety of topics related to polarity, chirality and molecular structure are also described. Some of the recent work associated interesting phase structures and phase sequences are also summarized.
2.1. Recent advances in Banana shaped Liquid crystals,
Banana Mania: Quest for Chirality in Achiral Molecule:

Bent or banana or V-shaped molecules as shown in Figure 2.1 exhibiting banana mesomorphism has been attracted much attention in the last decade because of its distinct properties [1-11]. The discovery of ferroelectric/antiferroelectric properties viz., polar switching in a bent core liquid crystal and the extensive research activity led to a new era of liquid crystal science in particular polarity and chirality. The bent shape of the molecules can preferably be packed in a distinct direction viz., the bent direction to manifest the long range correlation of the lateral dipole moments to yield the macroscopic polarization in smectic layers.

2.2. Achiral Molecules: Chiral Materials: ferroelectricity and anti-ferroelectricity:

2.2.1. Banana or Bent or Bow-shaped Liquid Crystals:

Is molecular chirality essential for a liquid crystal to exhibit (anti) ferro electric property?

The answer has been provided by the lecture and the corresponding paper of Takezoe at the 6th International Liquid Crystal Conference 1996 in Kent, Ohio. He reported, one of the most exciting of the new FLC research areas that burst into prominence, a new type of mesophase called banana liquid crystal phase i.e., achiral banana (or bow or bent) shaped molecules (Figure 2.1) exhibiting liquid crystalline behaviour (anisotropic fluid) as well as ferroelectricity (or antiferroelectricity) in liquid crystalline phase with large spontaneous polarization. In 1996 Takezoe, Watanabe and coworkers [1-7] in Japan carried out detailed experimental studies in bent shaped molecules (Figure 2.1) to discover that the molecular chirality is not a necessary condition for the existence of ferro or antiferroelectricity in liquid crystalline smectic phases. They discovered that bent or banana shaped molecules exhibit banana liquid crystalline phases and possess ferroelectric order. Moreover this banana shaped achiral molecules [8-11, 13-18] assembling in tilted smectic layers, which manifest the polar order parallel to layers, exhibit distinct ferroelectric properties in the high temperature liquid crystalline phase. This discovery was the beginning of a lot of activity to investigate the structure and properties of these new mesophases, which
are not comparable with smectic phases formed by calamitic mesogens. The term "banana-shaped mesogens" is used as a synonym for this new field of liquid crystals; and hence this field has been attracted much attention in recent years.

\[
P_s = 500 \text{nC cm}^{-2}; \quad \text{b}_{\text{vec}} = -20 \text{ to } 40 \times 10^{-30} \text{cm}^5 \text{e.s.u}^{-1}.
\]

Non-linear coefficients ~ 50pm for a monodomain sample

Figure 2.1: Molecular Structure of the bent molecule studied by Takezoe’s group

So far eight banana phases, B₁ to B₈, have been identified and in two of these phases, B₂ (S₁ of Figure 2.1) and B₅, the polarization direction is inverted in alternating layers, and hence both the phases are antiferroelectric in the absence of applied electric field. The B₂ phase is the most common and most widely studied phase in bent core liquid crystals. Four different supramolecular packing arrangements are found to exist with two of them form chiral conglomerates (SmCₐPₐ, SmCₐPₐ₁), while the other two appear as racemates (SmCₐPₐ, SmCₐP₁) [19, 20]. Ferroelectric switching is observed in these phases, with a field-induced transition from antiferroelectric to ferroelectric. The observed saturation values for the spontaneous polarization are high (\(P_s = 350 \text{nC/cm}^2\)) (and in some compounds as large as 1000 nC/cm²). In addition, the nonlinear second-order susceptibility for second harmonic generation (SHG) is very large (\(d_{11} = 10 \text{ pm/V}\)) and the SHG properties are comparable to inorganic materials. Moreover these materials exhibit liquid crystalline behaviour.

2.2.2. What are the requirements?

The necessary requirement for the formation of ferroelectric liquid crystal is the introduction of polar symmetry in a system [12, 13]. Hence the polar symmetry has
been obtained by the introduction of the essential requirements viz., chirality of the molecules and their tilted association in smectic layers, leading to reduced symmetry, to form conventional ferroelectric liquid crystals in 1976. However in 1996, the necessary requirements has been replaced by the shape factor, i.e., banana shaped achiral molecules, to induce polar C2V symmetry which has been implicated by the efficient, tilted packing of the banana shaped molecules into a smectic layer, with the direction of spontaneous polarization parallel to two-fold symmetry axis. Thus the tilt of the molecules on the one hand and the polar order of the bent molecules on the other hand are two independent symmetry breaking factors, which cause a chirality of the smectic layers, where the handedness depends on the tilt direction of the molecules. These materials have become potentially promising candidates for basic as well as application oriented research in this decade and shall continue to do so in future as evidenced by the stream of reports appearing in literature currently.

2.2.3. Challenges:

The possibility of designing and using achiral bent shaped liquid crystalline molecular materials suitable for technical applications in future depends on the understanding of structure–property relationships. Even though a good number of new achiral liquid crystalline molecules are synthesized, few of them have been examined for their electro-optic and NLO characteristics [4-11] a large pool of substances is a very important condition for extensive physical measurements. Few of the important challenges are chemical stability to atmospheric conditions, position of substituents which can affect leading to loss of banana liquid crystalline behaviour, influence of substituents to enhance NLO characteristics etc. The bent shape of these molecules results from a central 1,3-phenylene (or modifying the ring by 2,7-naphthalene) [4] unit and compounds with five, six or seven aromatic (or heterocyclic) rings have been synthesized [14-16]. Nonetheless, most banana-shaped liquid crystals reported up to now correspond to five-ring mesogens with a 1,3-phenylene central unit as shown in Figure 2.2. On the basis of this general formula, different chemical modifications can be considered and according to the available data [14-16] each alteration can lead to a change in or even to the loss of the liquid crystalline properties. The reasons for this are still elusive. The influence of the nature, position and direction of the linking groups “X, Y, X’ and Y’” appears very strong. In fact the compounds with azomethine and carboxylic linkages (Y = -N= -25-
CH-, X = -COO-, X' = -OOC-, Y = -CH=N) exhibit banana liquid crystalline phases, while the simple inversion of the sense of linking groups, Y (-CH=N-) and Y' (-N=CH-), leads to the disappearance of these mesophases. It appears that connecting groups corresponding to an alternating distribution of the electronic density throughout the molecules favour the liquid crystalline properties.

The liquid crystalline properties of the banana-shaped compounds are also strongly influenced by the nature and position of the lateral substituents. However the major drawback in all these compounds exhibiting banana phases is their limited thermal, hydrolytic and photochemical stability because of the presence of the CH=N group. This problem can be overcome either by the introduction of o-hydroxyl group with imine linkage promoting to form intermolecular H-bonding to yield a stable molecule or replacing the imine linkage by ester linkage (Y = -COO-). The physical studies reported in SmC* materials, are being complicated by the hydrolytic instability of the molecules. It was observed that the resorcylidene aniline core actually seems superior to the benzylidene aniline core with respect to exhibiting tilted phases, mesogenicity, and is more stable towards hydrolysis. Recently new achiral electro-optically active bow-phase materials [17, 18] (Figure 2.3) are reported, exhibiting potentially useful high strength analog electro-optics in standard LC cells (V-shaped switching). If the linkages ‘Y’ = resorcylidene and ‘X’ = -COO- between the phenyl rings A-B and B-C of Figure 2.2 respectively are swapped, the molecule in Figure 2.3 becomes a molecule shown in Figure 2.4. The o-hydroxyl groups in the ring B
of Figure 2.4 not only promotes H-bonding and thereby stabilize the compound but can also promote metal complexation to replace the non-liquid crystalline inorganic materials.

Figure 2.3: Molecular structure obtained on swapping the linking group and on introducing the resorcylidene moiety.

Thus, modifying the initial structure with an o-hydroxyl group, attached at position 2 of the phenyl ring B (Figure 2.4a) yielded banana liquid crystalline phases. Further, the introduction of lateral substituents in the central ring ‘C’ like nitro group with its large dipole moment and pronounced electron-attracting ability offers a way to drastically change the electron distribution in the aromatic core. This has been used to enhance NLO-effects such as second harmonic generation (SHG) in liquid crystals and in liquid crystalline polymers. Further, the introduction of a nitro group on position 4 of the central ring (Figure 2.4b) produces new mesophases. We synthesized few homologues in our laboratory and the preliminary studies [21] are encouraging. Hence systematic studies are to be performed in a particular homologous series to arrive at the importance of the lateral substituents attached to the central ring.

Figure 2.4 a: Modifying the initial structure with an o-hydroxyl group, attached at position 2 of the phenyl ring B.
The studies on the influence of substituents on the intermediate or outer rings are very few and meager [22]. The influence of chain length played an important role in the nature of banana phases exhibited by bent shaped compounds.

![Chemical structure](image)

Figure 2.4 b: Introduction of a nitro group on central phenylene unit.

Two or three different mesophases are observed in banana-shaped compounds depending on the length of the alkyl or alkyloxy or alkylthio terminal chains, which is rather subtle and complex unlike that in calamitic mesogens. Nevertheless, in a homologous series, the short homologues exhibit an intercalated banana “Bv” and/or a two dimensional “B1” phase and the long chain derivatives show a switchable lamellar “B2 phase”. Other systems present [23, 24] a more complex evolution of the polymorphism depending on the length or on the nature of the terminal chains. The influence of a lateral fluorine or chlorine or methyl substituents in the terminal or outer phenyl ring gave evidence of the subtle relationship between the chemical structure and mesomorphic properties of banana compounds. Further, lateral substituents can cause steric effects and thereby the Vander Waals volume of the substituents is usually more important with respect to phase behaviour than dipolar interactions. The more detailed influences of lateral substituents depend on the structure of the rigid core and the position of the substituents. Further lateral substitution in calamitic or conventional liquid crystals enhances the molecular width and leads to a larger interpenetration of the terminal chains and decrease in molecular layer spacing. Sometimes the nature of phase also changes. Generalizations are difficult; since the effects differ between polar and non-polar mesogens. Moreover the molecular organization of bent-shaped compounds is a result of a complex and subtle balance between the electrostatic interactions and the van der Waals interactions developed by the aliphatic chains. Thus the distribution of the electrostatic potential maximum (extrema) along the molecule will strongly influence the molecular arrangement and the nature of the mesophases. Hence abundant data
is necessary to arrive at generalized conclusions between structure-property relationship and their suitability in practical applications. In Germany Weissflog et al [15, 16] reported antiferroelectric current response while Heppke et al [25] observed ferroelectric current dynamics in several other homologues. The discovery of the spontaneous formation of macroscopic chiral domains in smectic phases composed of achiral bow-shaped molecules by Clark, Walba and co-workers [17, 19, 20] in USA has dramatically broadened the scope of the research on chiral/polar smectics. These materials exhibit several completely new phases of matter, and are (based on recent history) quite likely to have more surprises in store. Using detailed electro-optic investigations they gave evidence [17, 19, 20] that polar packed molecules are tilted with respect to layer normal. Most of the materials, which have been reported to exhibit banana liquid crystalline phases invariably, possess Schiff’s base imine linkage and a major drawback of these compounds is their limited thermal, hydrolytic and photochemical stability. Hence all the physical studies can be complicated by the hydrolytic instability of the molecules. Even though banana liquid crystalline mesogens, exhibiting ferroelectric and antiferroelectric properties, without Schiff’s base units have been reported by Tschierske et al, [26-28] variations in the substituents on the bis-Schiff’s base bent-core system have proven remarkably useful for providing interesting polar smectics. The resorcyldene aniline core, present in calamitic ferroelectric liquid crystals, actually seems superior to the benzylidene aniline core with respect to mesogenicity, and is more stable towards hydrolysis. This core also played a key role in the first discovery of antiferroelectric phase from achiral molecules, being the core present in the pioneering Soto-Bustamante-Blinov anticlinic bilayer antiferroelectric phase (SmAP_A) [12, 13]. Hence introduction of o-hydroxyl group to Schiff’s base imine linkage not only stabilizes the material to hydrolysis but also enhances the tilted phases due to transverse dipole moment.

2.3. Influence of terminal chain lengths:

The investigation of the relationship between the molecular structure and mesomorphic properties is very important and essential to liquid crystal chemistry. Hence designing a bent shaped molecule with systematic structural variation and synthesis of such designed compounds has to be carried out for systematic investigations in a large number of compounds of different homologous series.
exhibiting liquid crystalline behaviour to examine the relationship between the chemical structures and their physical properties, particularly the polar orders in the bent-core mesogens. For that purpose, new synthetic methods have to be developed; a large number of compounds are required for any generalization has to be arrived. Excellent reviews [29, 30] appeared recently describing the chiral and polar properties of the compounds, ferroelectric and/or antiferroelectric properties, chirality and optical properties, origin of chirality, molecular structure in different phases, influence of substituents, number of phenyl rings, nature of central core, influence of nature and position of substituent in central core as well as outer rings in the arms of bent molecule.

Since the discovery of polar switching in a bent-core liquid crystal [1] extensive research activity has led to a new era of liquid crystal science particularly in view of polarity and chirality [29-33]. Lee et al reported [34] the emergence of ferroelectricity and antiferroelectricity which is dependent on the number of carbons and position of the chiral along the terminal chains in banana shaped molecules of two homologous series of chiral bent core mesogens viz., 1,3-phenylene-bis[4-(4-alkoxyphenyliminomethyl)]benzoates Figure 2.5a and their oxygen analogues possessing ω-(S)-amyloxy terminal groups, Figure 2.5b. These achiral molecules spontaneously resolve into chiral domains and exhibit ferroelectric and antiferroelectric phases depending on odd and even of the end chain length in two homologous series (eight compounds) of bent-core liquid crystals. They further demonstrated that the interlayer steric interaction is very important for the selection of polar orders. Since many bent-core mesogens exhibit the antiferroelectric phase, such studies are expected to provide guidelines for the molecular designs to realize the ferroelectric phase.

![Figure 2.5: 1,3-phenylene-bis[4-(4-alkoxyphenyliminomethyl)]benzoates a and their oxygen analogues b possessing ω-(S)-amyloxy terminal groups.](image)
Tschierske et al. reported [35-43] several bent core compounds Figure 2.6, without imine linkage in recent years. They also reported several polyphilic molecules composed of a bent aromatic core, oligo (siloxane) units, and alkyl segments were synthesized, and the self-organization of these molecules was investigated. Most materials organize into polar smectic liquid crystalline phases.

Figure 2.6: Molecular structure of Bent core compounds without imine linkage.

The switching process of these mesophases changes from antiferroelectric for the nonsilylated compounds via superparaelectric to surface-stabilized ferroelectric with increasing segregation of the silylated segments. Based on the response to electric field they had proposed that the siloxane sublayers stabilize a polar synclinic ferroelectric (SmC\textsubscript{S}P\textsubscript{I}) structure, and the escape from a macroscopic polar order as well as steric effects leads to a deformation of the layers with formation of disordered micro domains, giving rise to optical isotropy. Another striking feature is the spontaneous formation of chiral domains with opposite handedness. For two compounds, a temperature-dependent inversion of the optical rotation of these domains was found, which is associated with an increase of the tilt angle of the molecules from <45° to >50°. This observation confirms that it is a new source of optical activity in supramolecular systems. Further they also observed phase segregation is lost with the increasing alkyl chain length and a transition from smectic to a columnar phase. In the columnar phase, the switching process is antiferroelectric and takes place by rotation of the molecules around the long axes,
which reverses the layer chirality; that is, the racemic ground-state structure is switched into a homogeneous chiral structure upon application of an electric field. The presence of cis double bonds (Table 2.1) which increase the flexibility of the chains, does not decrease the clearing temperatures significantly, but drastically reduces the melting points, leading to bent-core mesogens with glassy polar smectic phases [40-43]. Also branching of the chains is of great importance and can give rise to low melting points and glassy materials [41]. Even more importantly, branching can lead to a transition from AF to FE smectic phases [5] as well as to B7 subtypes due to changes at the interlayer interfaces.

Table 2.1: Comparison of the mesophases shown by compounds containing different types of terminal chains.

<table>
<thead>
<tr>
<th>The Terminal Chain (R)</th>
<th>Phase transitions/°C</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁₀H₂₁</td>
<td>Col₁ 166 I</td>
<td>26</td>
</tr>
<tr>
<td>C₁₂H₂₅</td>
<td>SmCP₁₅ 159 I</td>
<td>42</td>
</tr>
<tr>
<td>(CH₂)₉ CH=CH₂</td>
<td>Col₁ 146 I</td>
<td>43</td>
</tr>
<tr>
<td>(CH₂)₁₀ CH=CHCH₃ (cis)</td>
<td>SmCP₁ 125 I</td>
<td>40</td>
</tr>
<tr>
<td>(CH₂)₁₁ CH=CH₂</td>
<td>SmCP₁ 102 I</td>
<td>40</td>
</tr>
<tr>
<td>(CH₂)₁₁OOCCH=CH₂</td>
<td>SmCP₁ 107 I</td>
<td>40</td>
</tr>
<tr>
<td>(CH₂)₁₂OOC(C₃H₃)CH₂</td>
<td>SmCP₁ 62 I</td>
<td>40</td>
</tr>
<tr>
<td>(CH₂)₁₁SiMe₂OSiMe₂OSiMe₃</td>
<td>USmCP₁₄ Col₂ P₁₅₁</td>
<td>43</td>
</tr>
<tr>
<td>(CH₂)₆C₄F₉</td>
<td>SmCP₁ 213 I</td>
<td>26</td>
</tr>
</tbody>
</table>

2.4. Influence of linking groups in bent core molecules:

Weissflog et al [44] recently reported novel five ring bent core systems possessing only ester connecting groups between the aromatic phenyl rings and different lateral substituents at the central phenyl ring viz., 1,3-phenylene bis[4'- (4''-alkyloxyphenoxy carbonyl)]benzoates Figure 2.7a and isomeric 1,3-phenylene bis-[4'- (4''-dodecyl oxybenzoyloxy)benzoates Figure 2.7b with alkyl chain length of
octyloxy or larger are presented. They demonstrated that the influence of lateral substituents on the banana mesophase behaviour is much more pronounced than in the calamitic compounds. They also found that mesophase behaviour strongly depends on the position of the lateral substituents. Compounds, which are derived from 4-cyano-, 4-chloro- and 4,6-dichloro-resorcinol, show polymorphism variants where polar phases (SmAP, SmCP) occur together with nematic and conventional smectic phases, e.g. SmA–SmAP, SmA–SmCP, N–SmA–SmCP, SmA–SmC–SmCP and SmC–SmCP.

![Molecular structure of the compound studied by Weissflog et al.](image)

Figure 2.7: Molecular structure of the compound studied by Weissflog et al.

On the basis of the behaviour of two series of materials, the occurrence of different polar-switching mechanisms had been demonstrated. Apart from the usual mechanism by director rotation around the tilt cone, the polar switching can also take place through collective rotation of the molecules around their long axes in SmCPA and SmCPF phases, which corresponds to a field-induced switching of the layer chirality viz., coupling of reversal of layer chirality with field reversal. A remarkable finding is the polar switching in the crystalline modification of long-chain, bent-core compounds with a methyl group in 2-position, which is accompanied by a clear change of the optical texture and by a relatively high switching polarization (approx. 600 nC/cm²). It was found for selected laterally substituted bent-core compounds that, above the transition temperature of a polar to a non-polar phase, the
non-polar phase can be transformed to the polar phase by application of an electric field, which was proved for the transitions isotropic–SmCP$_F$, SmA–SmCP$_F$ and isotropic–CrII polar phase.

Recently Gomola et al [45, 46] reported two different types of homologous series of compounds **Figure 2.8 and 2.9**, exhibiting orthogonal polar SmA phases. Three series of asymmetric bent-core compounds were synthesized and their mesomorphic properties were studied. All the compounds possess 2-methylresorcinol as a central unit, nitro and/or chloro substituents in the outermost rings and a stilbene linking group between in two outer phenyl rings as a main element in the structure. Molecules of series 1 and series 2 possess only saturated terminal chains while those of series 3 have one or both unsaturated chains. All the compounds exhibit the isotropic to uniaxial orthogonal phase with ferroelectric properties SmAP$_R$ phase transition and the B1$_{RevTilted}$ phase at lower temperatures. For compounds with one olefinic terminal chain, the temperature range of the SmAP$_R$ phase was found to be narrower in comparison to compounds with both saturated terminal chains. Dielectric investigation inferred that both the SmAP$_R$ and B1$_{RevTilted}$ phases and two different types of dynamical behaviour were observed.

Figure 2.8: Molecular structure possessing 2-methylresorcinol as a central unit.

The compounds with 2-acetyl groups exhibited polarization randomised non-tilted smectic A (SmAP$_R$) and room temperature non-tilted smectic (SmAP$_A$) phases, a first example of polar biaxial Smectic A to polar uniaxial smectic A phase.

Figure 2.9: Molecular structure possessing 2-acetyl groups as a central unit reported by Gomola et al.
Nguyen et al [47-52], Weissflog et al [53-55] reported the five ring banana shaped molecules derived from isophthalic acids, as shown in **Figure 2.10b** and **c**, apart from different substituted compounds (**Figure 2.10a**). By a combination of several linking groups and different selected substituents either on the outer ring or on the central ring several mesophases with switching properties are detected. Their studies revealed new structural modifications and also the importance of alkyl chain length on banana polymorphism. They demonstrated the importance of the nature of lateral substituent and its position on the central ring in affecting the liquid crystalline properties. Further they also reported the importance of the nature and the sense of the linking groups and also the sense of bridging group of the central linking group in deciding the rigidity of the molecule and conformational freedom in exhibiting switchable banana phases. They reported B1, and B6 phases in lower homologues and B2 phase higher homologues in bent shaped molecules with a thio ester linkage. They also reported ferroelectric switching behaviour for a B7 phase in fluoro substituted bent-core molecules in peripheral positions on the aromatic core, ortho to each of the two terminal alkoxy chains. This special substitution pattern seems to be a quite useful structural unit for the formation of ferroelectric switchable banana phases, which was evidenced in fluoro substituted compounds [15, 56]. Nguyen et al reported [52] derivatives of esters of isophthalic acids (**Figure 2.10b**), which exhibited conventional SmC and nematic phase, while the compounds substituted with a fluorine atom (X= F) exhibited switchable phases. The fluorine derivatives exhibited four smectic phases without in-plane order but the structure of the mesophase are not yet known. The derivatives of isophthalic acid esters with five-ring banana-shaped mesogens [53] (**Figure 2.10c**), which are distinguished by the linkage between the aromatic rings and the Bromine substitution in the 4-position, decreases the melting and clearing temperatures as compared to those of the analogous unsubstituted compounds and exhibited B2 phase. Mieczkowski et al reported [58, 58] the synthesis of new bent-core derivatives (**Figure 2.10d**) with ethylene linkage in banana branches instead of an imine or ester linkage and incorporating lateral substituents like fluorine or iodine atoms. The compounds exhibited B7 and B2 phases with anticlinic (SmC\textsubscript{A}P\textsubscript{A}) or synclinic (SmC\textsubscript{S}P\textsubscript{A}) interlayer structures, depending on the central ligand and lateral substituent and also found lower transition temperatures than the unsubstituted analogues.
Figure 2.10: Molecular structure of different Banana shaped molecule Studied with respect to a combination of several linking groups and different selected substituents either on the outer ring or on the central ring.

The SmC_AP_A phase exhibited strong optical activity and chiral domain segregation could be induced by applying a weak electric field in these compounds. The homologous series of N,N'-bis[4-(4-n-alkoxybenzoyloxy)benzylidene]-phenylene-1,3-diamines, shown in Figure 2.10e, exhibited interesting phase behaviour [27].
The lower homologues (n = 1-6) form an intercalated B6 phases, the middle homologues (n = 5-10) form the two dimensional B1 phases, where as the long chain members shows the switchable B2 phase. Therefore, systematic studies of homologues series are necessary for the clear understanding of the phase behaviour. Pelzl et al reported [54] a novel chiral banana shaped mesogens, 4-chlororesorcinol-bis[4-(4-n-dodecyloxybenzoyloxy)benzoate] (Figure 2.10f), exhibiting nematic phase with unusual optical and electro-optical properties. First examples of achiral banana shaped compound (Figure 2.10g) possessing perfluoroalkyl chain in the terminal position and lateral substituent at the top (or 5-position) of the central benzene ring exhibited B2 and SmA phases, characteristics for a bent and rod shaped molecules with reduced clearing and melting temperatures have been reported by Kovalenko et al [59, 60]. Pelzl et al reported [55] the first banana phase, B6, found in Vorlander’s achiral banana shaped compounds synthesized during 1900-37 [61, 62], which is shown in Figure 2.10h.

Prasad et al reported [63, 64] first examples of achiral bent-core molecules (Figure 2.11) of five aromatic rings, linked through an azo linkage and with an imine and/or ester linkage, exhibiting B1 and B2 banana mesophases relatively at low transition temperatures and with wide temperature ranges. The B2 phase of these materials is identified to be the anticlinic-antiferroelectric, SmCA phase. The observation of bent-core phases in azo compounds assumes significance from the fact that the introduction of the \(-\text{N} = \text{N}~\) linkage adds a new dimension, namely photochromicsm, to this field.

Figure 2.11: Molecular structure of azo based banana shaped molecule.

Kumar et al reported [65] a W-shaped molecule PBPBTB exhibiting a sequence of different ferroelectric and antiferroelectric mesophases with anticlinical coupled double banana shape (see Figure 2.12). Molecules with analogous shaped dimer also exhibit a switching between ferroelectricity and antiferroelectricity [66].
Watanabe et al reported [67-70] interesting mesophases, as found out by their banana leaf like textures ((CH$_2$)$_n$ spacer), exhibited by the dimeric systems (Figure 2.13a) depending upon the number of carbon atoms (parity) in the spacer joining the two aromatic fragments with alkyl or alkoxy end chains. Further such achiral systems exhibit antiferroelectric or nonferroelectric switching behaviour under the influence of triangular wave electric field provided the odd alkylene spacer (promoting bent shape) and tail parts of the dimer segregate to form smectic layers. Moreover second harmonic generation studies [67, 68] confirmed the growth of macroscopic polar order under the influence of electric field in dimeric molecules.

The homologous series of symmetric dimeric liquid crystals, where two two-ring or three-ring mesogenic units are connected by a bis (carbonyloxy) propylene spacer (Figure 2.13b and c), exhibited conventional calamitic smectic phases [71, 72]. The most interesting result is the inverse phase sequence SmA to SmC has been observed with increasing temperature in compounds of three ring mesogenic units. Ferroelectric switching behaviour is also reported [73] in bent shaped mesogens.
possessing non-mesogenic units linked by alkylene spacer by interchanging the ester linkage with imine linkage unit in the nonmesogenic unit. Sadashiva and his coworkers reported several compounds exhibiting banana liquid crystalline behaviour during the last few years. Sadashiva et al [74-82] first reported the effect of a number of lateral substituent on the mesophase formed by compounds composed of achiral banana-shaped molecules viz., derivatives of resorcinol possessing seven aryl rings with ester linkages. The synthesized compounds and the reported phases are shown in Table 2.2.

Sadashiva et al [83-85] also reported the synthesis and characterization of several compounds composed of highly polar unsymmetrically substituted esters of five ring bent core molecules, having the general molecular structure (Figure 2.14), exhibiting partial bilayer biaxial smectic A uniaxial smectic A transition. The
unsymmetrical molecule contains an n-alkoxy chain in one of the arms of the bent-core, while the other arm is terminally substituted with a highly polar cyano group. The partial bilayer biaxial smectic A (SmA_{db}) phase in which the bent cores of two neighbouring molecules overlap in an antiparallel orientation as in the case of highly polar lath-like molecules.

![Diagram](Figure 2.14: Banana shaped molecule with highly polar CN group in one of the end.)

Reddy et al, and Thisayukata et al reported the homologous series of bent shaped compounds containing 2,7-dihydroxynapthalene [6, 75, 86-89] and 1,3 dihydroxy-benzene (resorcinol) [86-89] as a central bridging unit with lateral fluoro substituent(s) on the inner or outer phenyl rings. Some of the homologous compounds exhibit switchable B2 phase. The lower homologous compound display only nematic phase and B1 phase where as higher homologous compound exhibits B2 and monotropic B3 phases or columnar phases depending upon the number and position of fluoro substituents. The lateral fluoro-substituents not only lower the clearing transition temperature of the parent compound but also in lower homologous series displays monotropic nematic phase. The compounds with lateral fluoro substituent meta to ester linkage of the end phenyl ring exhibit B3 phase. The work can be summarized as follows. They have synthesized derivatives of resorcinol and 2,7-naphthol with either two or three rings in the wings of the molecule and studied structure-mesomorphism relationship with different substituents either on the central core ring or in the rings of the wing as shown in Table 2.3. The salient features are that some of these compounds are to exhibit

i) ferroelectric properties
ii) chiral behaviour
iii) biaxial phases,
iv) columnar phases and
v) calamitic phases depending on the position and nature of substituent. All the compounds are esters and are thermally stable. Several novel columnar (switchable
and non switchable), ferroelectric and anti ferroelectric phases have been reported in
the banana shaped mesogens derived from symmetric 2,7-dihydroxynaphthalene and
1,3-dihydroxyderivatives (Table 2.3) [75, 86-89].

Table 2.3

<table>
<thead>
<tr>
<th>Chain length(R)</th>
<th>Linking group</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>Z</th>
<th>Phase variants</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{n}H_{2n+1})</td>
<td>-COO- (ester)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>B1 or B2</td>
<td>86-</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>(C_{n}H_{2n+1}O)</td>
<td>-COO- (ester)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>B1,N or B2,</td>
<td>86-</td>
</tr>
<tr>
<td>4-12, 14, 16, 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>(C_{n}H_{2n+1}O)</td>
<td>-COO- (ester)</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>B1,N or B3, B2,</td>
<td>86-</td>
</tr>
<tr>
<td>4-12, 14, 16, 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>(C_{n}H_{2n+1}O)</td>
<td>-COO- (ester)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>N-B1 or B1 or SmC_A, P_A</td>
<td>75</td>
</tr>
<tr>
<td>7-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{n}H_{2n+1}O)</td>
<td>-COO- (ester)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>N-B1 or SmC_A, P_A</td>
<td>75</td>
</tr>
<tr>
<td>5-12, 14, 16, 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{n}H_{2n+1}O)</td>
<td>-N=CH- (imine)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Sm3, Sm2, Sm1</td>
<td>3, 6</td>
</tr>
<tr>
<td>18, 6-Me-8*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{n}H_{2n+1}O)</td>
<td>-N=CH- (imine)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>BX, CH_3 B2,</td>
<td>90</td>
</tr>
<tr>
<td>6, 8, 10, 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CN B2', B2''-N</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cl B2</td>
<td></td>
</tr>
</tbody>
</table>
2.5. Motivation of this work:

The discovery of Williams's domains viz., the electro-optic response of LCs in 1963 followed by the room temperature LC with subsequent application as twisted nematic (TN) display had transformed the label of LC of curious chemical nature into quintessential molecular electronic materials of the current era. During the last 30 some years, the applications of LCDs have expanded tremendously. Starting from watches and calculators in the 1970s with direct-drive TNs, the portable PC terminals utilized monochrome simple-matrix-addressed TNs in the early 1980s, followed by the appearance of colour panels for notebook PCs in 1990s. Today, thin film transistor (TFT) TFT-LCD TV panels are available in the market with sizes up to 150 cm sustaining the challenges and emerged victoriously to compete with CRTs. Nevertheless, along the long developmental paths, there have been numerous challengers such as thin film EL, vacuum fluorescence, etc. Now, it looks certain that TFT-LCDs will replace the ultimate king, CRT, in the home's living room as the primary video display. The LCD technologies have amazing resources and versatility. What will be the next major application beyond TV? We don't know yet. However, we are certain that the novel materials will be able to rise above the challenges and bring the technology to the next level. Bent-core liquid crystal are one of those class of molecules possessing great potential in applications owing to their polar packing which in turn account for their polar switching. Many reports on new bent-core compounds quickly began to appear. The challenge of finding novel mesophases, explanations for the novel optical textures observed and the description of new phenomena in these materials have all attracted the interest of researchers throughout the world. Although numerous number of bent-core materials were synthesized and extensively studied, still it was not clear why most of these B-phases are antiferroelectric and where from the layer chirality arises although the individual constituents molecule are achiral. In this thesis, the design and synthesis of novel bent-core compound will be discussed with a closer inspection on the relationship between molecular structure and associated mesophases. Some of the emissive bent core compounds are designed and synthesized during the tenure of this work will also be discussed and finally, a fresh approach of using a non destructive technique of Fluorescence Confocal Polarizing Microscopy to understand the orientational pattern in smectic phases will be discussed in great detail.
References

-44-

-45-

