CHAPTER VI

SEPARATION AXIOMS IN FUZZY BICLOSURE SPACES

This chapter is devoted to the study of separation axioms in fuzzy biclosure spaces. In section 6.1, we study Hausdorff fuzzy biclosure space and some of its properties. Section 6.2 and 6.3 deals with regular fuzzy biclosure spaces and normal fuzzy biclosure spaces respectively. We also introduce and investigate several important properties of these spaces.

6.1. HAUSDORFF FUZZY BICLOSURE SPACES

The purpose of this section is to introduce the concept of Hausdorff fuzzy biclosure spaces and study some of their properties.

Definition 6.1.1. A fuzzy biclosure space \((X, u_1, u_2) \) is called Hausdorff fuzzy biclosure space if for any two distinct fuzzy points \(x \) and \(y \) in \(X \) with different support there exists fuzzy open set \(U_1 \) in \(X, u_1 \) and fuzzy open set \(U_2 \) in \(X, u_2 \) such that \(x \in U_1 \), \(y \in U_2 \) and \(0_X \notin U_1 \cap U_2 \).

Example 6.1.2. Let \(X = \{a, b\} \). For any \(I^X \), let \(\text{supp} x : A(x) \neq 0 \). Define fuzzy closure operators \(u_1, u_2 : I^X \rightarrow I^X \) by the following (for simplicity, we identify each ordinary subset of \(X \) with its characteristic function): \(u_1 \{a\} \) if \(\text{supp} \{a\} \), \(u_1 \{b\} \) if \(\text{supp} \{b\} \), \(u_1 X \) if \(\text{supp} X \), \(u_1 0_X \) if \(\text{supp} 0_X \). Then \((X, u_1, u_2) \) is Hausdorff fuzzy biclosure space.
Lemma 6.1.3. Let X, u_1, u_2 be a fuzzy biclosure space and let Y, v_1, v_2 be a fuzzy closed subspace of X, u_1, u_2. If γ is both a fuzzy open set in X, u_1 and X, u_2, then 1_Y is both a fuzzy open set in Y, v_1 and Y, v_2.

Proof. Let γ be a fuzzy open set in X, u_1. Then 1_X is a fuzzy closed set in X, u_1. By Lemma 2.3.1.6, $1_X 1_Y$ is a fuzzy closed set in Y, v_1. Since $1_Y 1_X 1_Y$, the complement of $1_X 1_Y$ in Y is 1_Y. Hence 1_Y is a fuzzy open set in Y, v_1.

Similarly, if γ is a fuzzy open set in X, u_2, then 1_Y is a fuzzy open set in Y, v_2.

Proposition 6.1.4. Let X, u_1, u_2 be a fuzzy biclosure space and let Y, v_1, v_2 be a fuzzy closed subspace of X, u_1, u_2. If X, u_1, u_2 is a Hausdorff fuzzy biclosure space, then Y, v_1, v_2 is a Hausdorff fuzzy biclosure space.

Proof. Let y and z be any two distinct fuzzy points of Y with different support. Then y and z are distinct fuzzy points of X with different support. Since X, u_1, u_2 is a Hausdorff fuzzy biclosure space, there exist fuzzy open set in X, u_1 and fuzzy open set in X, u_2 containing y and z respectively and 0_X. Consequently, $y 1_Y, z 1_Y$ and $1_Y 1_Y 0_Y$. By Lemma 6.1.3, 1_Y is fuzzy open set in Y, v_1 and 1_Y is fuzzy open set in Y, v_2.

Some Aspects Of Fuzzy Topological Spaces
Hence, \(Y, v_1, v_2 \) is a Hausdorff fuzzy biclosure space.

Proposition 6.1.5. Let \(X, u^1, u^2 : J \) be a family of fuzzy biclosure spaces. Then \(X, u^1, u^2 \) is a Hausdorff fuzzy biclosure space if and only if \(X, u^1, u^2 \) is a Hausdorff fuzzy biclosure space for each \(J \).

Proof. Suppose that \(X, u^1, u^2 \) is a Hausdorff fuzzy biclosure space. Let \(J \) and \(x, y \) be any two distinct fuzzy points of \(X \) with different support. Then \(x \) and \(y \) are distinct fuzzy points of \(X \) with different support. Since \(X, u^1, u^2 \) is a Hausdorff fuzzy biclosure space, there exist fuzzy open set \(1 \) in \(X, u \) and fuzzy open set \(2 \) in \(X, u \) such that \(x, y \) and \(0x \).

Therefore, \(X, u^1, u^2 \) is a Hausdorff fuzzy biclosure space.

Conversely, suppose that \(X, u^1, u^2 \) is a Hausdorff fuzzy biclosure space for each \(J \). Let \(x, y \) be any two distinct fuzzy points of \(X \) with different support. Then \(x \) and \(y \) are distinct fuzzy points of \(X \) with different support. Since \(X, u^1, u^2 \) is a Hausdorff fuzzy biclosure space, there exist a fuzzy open set \(1 \) in \(X, u \) and fuzzy open set \(2 \) in \(X, u \) such that \(x, y \) and \(0x \). Consequently, \(X \) is a fuzzy open set in \(X, u^1 \).
and \(X \) is a fuzzy open set in \(X, \mathcal{U}_1, \mathcal{U}_2 \) such that
\[
X \cup Y \cup X \cup X \cup 0X.
\]

Hence \(X, \mathcal{U}_1, \mathcal{U}_2 \) is a Hausdorff fuzzy biclosure space.

Proposition 6.1.6. Let \(X, \mathcal{U}_1, \mathcal{U}_2 \) and \(Y, \mathcal{V}_1, \mathcal{V}_2 \) be fuzzy biclosure spaces. Let \(f: X, \mathcal{U}_1, \mathcal{U}_2 \to Y, \mathcal{V}_1, \mathcal{V}_2 \) be injective and fuzzy continuous. If \(Y, \mathcal{V}_1, \mathcal{V}_2 \) is a Hausdorff fuzzy biclosure space, then \(X, \mathcal{U}_1, \mathcal{U}_2 \) is a Hausdorff fuzzy biclosure space.

Proof. Let \(x \) and \(y \) be any two distinct fuzzy points of \(X \) with different support. Then \(f(x) \) and \(f(y) \) are distinct fuzzy points of \(Y \) with different support. Since \(Y, \mathcal{V}_1, \mathcal{V}_2 \) is a Hausdorff fuzzy biclosure space, there exist a fuzzy open set in \(Y, \mathcal{V}_1 \) and a fuzzy open set in \(Y, \mathcal{V}_2 \) containing \(f(x) \) and \(f(y) \) respectively and \(0Y \). Since \(f \) is fuzzy continuous, \(f^1 \) is a fuzzy open set in \(X, \mathcal{U}_1 \), \(f^1 \) is a fuzzy open set in \(X, \mathcal{U}_2 \), \(f^1 f^1 0X \) and \(x f^1 \), \(y f^1 \). Therefore, \(X, \mathcal{U}_1, \mathcal{U}_2 \) is a Hausdorff fuzzy biclosure space.

6.2. REGULAR FUZZY BICLOSURE SPACES

In this section, we introduce the concept of regular fuzzy biclosure biclosure space and study some of their properties.

Definition 6.2.1. A fuzzy biclosure space \(X, \mathcal{U}_1, \mathcal{U}_2 \) is said to be
Separation Axioms In Fuzzy Biclosure Spaces

regular fuzzy biclosure space if for any fuzzy closed set in \(X, \, u_1 \) and any fuzzy point \(x \), there exist fuzzy open sets \(u \) and \(0 \) such that \(x \) and \(0 \).

Example 6.2.2. Example 6.1.2 is also regular fuzzy biclosure space.

Proposition 6.2.3. Let \(X, \, u_1, u_2 \) be a fuzzy biclosure space and let \(Y, \, v_1, v_2 \) be a fuzzy closed subspace of \(X, \, u_1, u_2 \). If \(X, \, u_1, u_2 \) is a regular fuzzy biclosure space, then \(Y, \, v_1, v_2 \) is a regular fuzzy biclosure space.

Proof. Let \(y \) be a fuzzy closed subset of \(Y, v_1 \) such that the fuzzy point \(y \). By Lemma 5.1.9, \(y \) is a fuzzy closed subset of \(X, \, u_1 \) such that the fuzzy point \(y \). Since \(X, \, u_1, u_2 \) is a regular fuzzy biclosure space, there exist fuzzy open sets \(u \) and \(0 \) such that \(y \), and \(0 \). Consequently, \(1y \) and \(1y \) are fuzzy open sets in \(Y, v_2 \) such that \(1y \). Hence, \(Y, v_1, v_2 \) is a regular fuzzy biclosure space.

Proposition 6.2.4. Let \(X, \, u^1, u^2 : J \) be a family of fuzzy biclosure spaces. Then \(X, \, u^1, u^2 \) is a regular fuzzy biclosure space if and only if \(X, \, u^1, u^2 \) is a regular fuzzy biclosure space for each \(J \).
Proof. Suppose that X, u^1, u^2 is regular fuzzy biclosure space.

Let J and let x_J be a fuzzy closed subset of X, u such that the fuzzy point x_J. Then X is a fuzzy closed subset of X, u^1 such that the fuzzy point x_J. Since X, u^1, u^2 is regular fuzzy biclosure space, there exist fuzzy open sets and in X, u such that the fuzzy point x_J and 0_X. Hence, X, u, u^1, u^2 is a regular fuzzy biclosure space.

Conversely, suppose that X, u^1, u^2 is a regular fuzzy biclosure space for each J. Let be a fuzzy closed subset of X, u^1 such that the fuzzy point x_J. Then X is a fuzzy closed subset of X, u^1 such that the fuzzy point x_J. Since X, u^1, u^2 is a regular fuzzy biclosure space, there exist fuzzy open sets and in X, u such that the fuzzy point x_J and 0_X. Therefore, the fuzzy point x_J in X and X. Consequently, X and X are fuzzy open sets in X, u^2 such that X, x_J and 0_X. Hence,
Proposition 6.2.5. Let \(X, u_1, u_2 \) and \(Y, v_1, v_2 \) be fuzzy biclosure spaces. Let \(f: X, u_1, u_2 \to Y, v_1, v_2 \) be injective, fuzzy closed and fuzzy continuous. If \(Y, v_1, v_2 \) is a regular fuzzy biclosure space, then \(X, u_1, u_2 \) is a regular fuzzy biclosure space.

Proof. Let \(X, u_1 \) such that the fuzzy point \(x \). Since \(f \) is injective and fuzzy closed, \(f \) is a fuzzy closed subset of \(Y, v_1 \) such that \(f \times f \). Since \(Y, v_1, v_2 \) is regular fuzzy biclosure space, there exist fuzzy open sets and in \(Y, v_2 \) such that \(f \times f \), \(f^{\top} \) and \(f^{\top} \) are fuzzy open sets in \(X, u_2 \) such that \(x \times f^{\top} \), \(f^{\top} \) and \(f^{\top} \) are fuzzy open sets in \(X, u_2 \) such that \(f^{\top} \).

6.3. NORMAL FUZZY BICLOSURE SPACES

In this section we introduce the concept of normal fuzzy biclosure space and study some of their properties.

Definition 6.3.1. A fuzzy biclosure space \(X, u_1, u_2 \) is said to be normal fuzzy biclosure space, if for every pair of fuzzy closed set in \(X, u_1 \) and fuzzy closed set in \(X, u_2 \) such that \(0_X \), there exist fuzzy open set in \(X, u_1 \) and fuzzy open set in \(X, u_2 \) such that \(0_X \).
Note. Normal fuzzy biclosure space Regular fuzzy biclosure space
Haudorff fuzzy biclosure space.

Example 6.3.2. Example 6.1.2 is also normal fuzzy biclosure space.

Proposition 6.3.3. Let \(X, u_1, u_2 \) be a fuzzy biclosure space and let \(Y, v_1, v_2 \) be a fuzzy closed subspace of \(X, u_1, u_2 \). If \(X, u_1, u_2 \) is a normal fuzzy biclosure space, then \(Y, v_1, v_2 \) is a normal fuzzy biclosure space.

Proof. Let \(\gamma \) be a fuzzy closed set in \(Y, v_1 \) and \(\gamma \) be a fuzzy closed set in \(Y, v_2 \) such that \(0 \gamma \). By Lemma 5.1.9, \(\gamma \) is a fuzzy closed set in \(X, u_1 \) and \(\gamma \) is a fuzzy closed set in \(X, u_2 \). Since \((X, u_1, u_2) \) is a normal fuzzy biclosure space, there exist fuzzy open set \(\gamma \) in \(X, u_1 \) and a fuzzy open set \(\gamma \) in \(X, u_2 \) such that \(0 \gamma \). Consequently, \(1 \gamma \), \(V \gamma \), and \(1 \gamma 1 \gamma \) are fuzzy open sets in \(Y, v_1 \) and \(1 \gamma \) is a fuzzy open set in \(Y, v_1 \) and \(1 \gamma \) is a fuzzy open set in \(Y, v_2 \). Hence, \(Y, v_1, v_2 \) is a normal fuzzy biclosure space.

Proposition 6.3.4. Let \(X, u^1, u^2 : J \) be a family of fuzzy biclosure spaces. Then \(X, u^1, u^2 \) is a normal fuzzy biclosure space if and only if \(X, u^1, u^2 \) is a normal fuzzy biclosure space for each \(J \).

Proof. Suppose that \(X, u^1, u^2 \) is a normal fuzzy biclosure space.
Let J and let 1 be a fuzzy closed set in X, u and 2 be a fuzzy closed set in X, u. Then X is a fuzzy closed set in X, u^1 and X is a fuzzy closed set in X, u^2 such that 0_X. Since X, u^1, u^2 is a normal fuzzy biclosure space, there exist a fuzzy open set in X, u and a fuzzy open set in X, u such that 0_X. Hence, X, u, u is a normal fuzzy biclosure space.

Conversely, suppose that X, u^1, u^2 is a normal fuzzy biclosure space for each J. Let 1 be a fuzzy closed set in X, u^1 and 2 be a fuzzy closed set in X, u^2 such that 0_X. Then X is a fuzzy closed set in X, u and X is a fuzzy closed set in X, u. Since X, u, u is a normal fuzzy biclosure space, there exist fuzzy open set in X, u and fuzzy open set in X, u such that 0_X. Therefore, X, u and X. Consequently, X is a fuzzy open set in X, u^1 and X is a fuzzy open set in X, u^2 such that ...
Hence, X, u^1, u^2 is a normal fuzzy biclosure space.

Proposition 6.3.5. Let X, u_1, u_2 and Y, v_1, v_2 be fuzzy biclosure spaces. Let $f : X, u_1, u_2 \to Y, v_1, v_2$ be injective, fuzzy closed and fuzzy continuous. If Y, v_1, v_2 is a normal fuzzy biclosure space, then X, u_1, u_2 is a normal fuzzy biclosure space.

Proof. Let A be a fuzzy closed set in X, u_1 and B be a fuzzy closed set in X, u_2 such that 0_X. Since f is injective and fuzzy closed, $f(A)$ is a fuzzy closed set in Y, v_1 and $f(B)$ is a fuzzy closed set in Y, v_2 such that $f(0_Y)$. Since Y, v_1, v_2 is a normal fuzzy biclosure space, there exist fuzzy open set O_Y in Y, v_1 and fuzzy open set in Y, v_2 such that $f^{-1}(O_Y)$ and $f^{-1}(0_Y)$. Since f is fuzzy continuous, $f^{-1}(O_Y)$ is a fuzzy open set in X, u_1 and $f^{-1}(0_Y)$ is a fuzzy open set in X, u_2 such that $f^{-1}(O_Y)$, $f^{-1}(0_Y)$ and $f^{-1}(0_Y)$ are normal fuzzy biclosure spaces. Hence, X, u_1, u_2 is a normal fuzzy biclosure space.