LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1.</td>
<td>Sources and grades of chemicals</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.2.</td>
<td>Calorimetric area in squares at various concentrations of potassium chloride and at 310.15 K</td>
<td>66</td>
</tr>
<tr>
<td>Table 5.1.</td>
<td>FTIR values of nitroimidazoles and PVP physical mixtures</td>
<td>76</td>
</tr>
<tr>
<td>Table 5.2.</td>
<td>XRD values of metronidazole-PVP physical mixtures</td>
<td>82</td>
</tr>
<tr>
<td>Table 5.3.</td>
<td>XRD values of tinidazole-PVP physical mixtures</td>
<td>83</td>
</tr>
<tr>
<td>Table 5.4.</td>
<td>XRD values of ornidazole-PVP physical mixtures</td>
<td>83</td>
</tr>
<tr>
<td>Table 5.5.</td>
<td>XRD values of secnidazole-PVP physical mixtures</td>
<td>84</td>
</tr>
<tr>
<td>Table 5.6.</td>
<td>DSC data of nitroimidazoles and PVP physical mixtures</td>
<td>94</td>
</tr>
<tr>
<td>Table 5.7.</td>
<td>Thermodynamic parameters of interaction of nitroimidazoles with PVP in physical mixtures (PM)</td>
<td>97</td>
</tr>
<tr>
<td>Table 5.8.</td>
<td>Thermodynamic parameters of interaction of nitroimidazoles with PVP in physical mixtures</td>
<td>98</td>
</tr>
<tr>
<td>Table 5.9.</td>
<td>FTIR values of nitroimidazoles and PVP solid dispersions</td>
<td>104</td>
</tr>
<tr>
<td>Table 5.10.</td>
<td>XRD values of metronidazole-PVP solid dispersions</td>
<td>111</td>
</tr>
<tr>
<td>Table 5.11.</td>
<td>XRD values of tinidazole-PVP solid dispersions</td>
<td>111</td>
</tr>
<tr>
<td>Table 5.12.</td>
<td>XRD values of ornidazole-PVP solid dispersions</td>
<td>112</td>
</tr>
<tr>
<td>Table 5.13.</td>
<td>XRD values of secnidazole-PVP solid dispersions</td>
<td>112</td>
</tr>
<tr>
<td>Table 5.14.</td>
<td>DSC data of nitroimidazoles and PVP solid dispersions</td>
<td>113</td>
</tr>
<tr>
<td>Table 5.15.</td>
<td>Thermodynamic parameters of interaction of nitroimidazoles with PVP in solid dispersions (SD)</td>
<td>121</td>
</tr>
<tr>
<td>Table 5.16.</td>
<td>Thermodynamic parameters of interaction of nitroimidazoles with PVP in solid dispersion</td>
<td>122</td>
</tr>
<tr>
<td>Table 5.17.</td>
<td>Thermodynamic parameters of interaction of nitroimidazoles with PVP in solution</td>
<td>123</td>
</tr>
<tr>
<td>Table 5.18.</td>
<td>Thermodynamic parameters of interaction of nitroimidazoles with PVP in solution of pH 7.0</td>
<td>125</td>
</tr>
<tr>
<td>Table 5.19.</td>
<td>Solubility of nitroimidazoles in presence of PVP</td>
<td>126</td>
</tr>
<tr>
<td>Table 5.20.</td>
<td>Chemical shift of the drug molecules and the displacement in</td>
<td>128</td>
</tr>
</tbody>
</table>
Table 5.21. Enthalpy of solution of various 5-nitroimidazoles at pH 3

Table 5.22. Thermodynamic parameters of inclusion complexes of metronidazole and cyclodextrins

Table 5.23. Thermodynamic parameters of inclusion complexes of tinidazole and cyclodextrins

Table 5.24. Thermodynamic parameters of inclusion complexes of ornidazole and cyclodextrins

Table 5.25. Thermodynamic parameters of inclusion complexes of secnidazole and cyclodextrins

Table 5.26. Thermodynamic parameters of inclusion complexes of nitroimidazoles and cyclodextrins

Table 5.27. Thermodynamic parameters of inclusion complexes of metronidazole and cyclodextrins in presence of 0.25% PVP

Table 5.28. Thermodynamic parameters of inclusion complexes of tinidazole and cyclodextrins in presence of 0.25% PVP

Table 5.29. Thermodynamic parameters of inclusion complexes of ornidazole and cyclodextrins in presence of 0.25% PVP

Table 5.30. Thermodynamic parameters of inclusion complexes of secnidazole and cyclodextrins in presence of 0.25% PVP

Table 5.31. Thermodynamic parameters of inclusion complexes of nitroimidazoles and cyclodextrins in presence of 0.25% PVP

Table 5.32. Solubility of 5-nitroimidazoles in 5% cyclodextrin in solutions in presence and absence of 0.25% PVP at pH 6.0

Table 5.33. Values of \(q_t \) at different time intervals of tinidazole at pH 8 and at 318.15 K

Table 5.34. Values of \(q_t \) at different time intervals of ornidazole at pH 8 and at 318.15 K

Table 5.35. Values of \(q_t \) at different time intervals of secnidazole at pH 8 and at 318.15 K

Table 5.36. Effect of pH, concentration and temperature on the chemical shifts of the cyclodextrin complexes
degradation rate constant and half life of metronidazole

Table 5.37. Effect of pH, concentration and temperature on the degradation rate constant and half life of tinidazole

Table 5.38. Effect of pH, concentration and temperature on the degradation rate constant and half life of ornidazole

Table 5.39. Effect of pH, concentration and temperature on the degradation rate constant and half life of secnidazole

Table 5.40. Fractions of different species of 5-nitroimidazoles present at different pH

Table 5.41. Various rate constants for the degradation of metronidazole

Table 5.42. Various rate constants for the degradation of tinidazole

Table 5.43. Various rate constants for the degradation of ornidazole

Table 5.44. Various rate constants for the degradation of secnidazole

Table 5.45. Activation parameters for the degradation reaction of metronidazole over the pH range 2-9

Table 5.46. Activation parameters for the degradation reaction of tinidazole over the pH range 2-9

Table 5.47. Activation parameters for the degradation reaction of ornidazole over the pH range 2-9

Table 5.48. Activation parameters for the degradation reaction of secnidazole over the pH range 2-9

Table 5.49. Arrhenius parameters for individual rate constants for the degradation reaction of metronidazole

Table 5.50. Arrhenius parameters for individual rate constants for the degradation reaction of tinidazole

Table 5.51. Arrhenius parameters for individual rate constants for the degradation reaction of ornidazole

Table 5.52. Arrhenius parameters for individual rate constants for the degradation reaction of secnidazole

Table 5.53. Enthalpy of solution of various 5-nitroimidazoles at different pH

Table 5.54. Enthalpy of solution of different species of 5-nitroimidazoles
Table 5.55. Molar enthalpy of solution and fractions of various species of drugs at pH 2 and 6

Table 5.56. Molar solubility, free energy and entropy of solution of the drugs

Table 5.57. Molar enthalpies of solution and excess molar enthalpies of solution for the binary mixtures of drugs in buffers at pH 2 and 6 and at temperature 310.15K

Table 5.58. Parameters h_i's for excess molar enthalpy of solution for binary systems

Table 5.59. Molar enthalpies of solution and excess molar enthalpies of solution for the binary mixtures of drugs in buffers at pH 2 and 6 and at temperature 310.15K

Table 5.60. Parameters h_i's for excess molar enthalpy of solution for binary systems

Table 5.61. Molar enthalpies of solution and excess molar enthalpies of solution for the binary mixtures of drugs in buffers at pH 2 and 6 and at temperature 310.15K

Table 5.62. Parameters h_i's for excess molar enthalpy of solution for binary systems

Table 5.63. Experimental and calculated values of excess enthalpies for ternary mixtures at pH 2 and 6 for nitroimidazoles, clarithromycin and omeprazole

Table 5.64. Experimental and calculated values of excess enthalpies for ternary mixtures at pH 2 and 6 for nitroimidazoles, roxithromycin and omeprazole

Table 5.65. Experimental and calculated values of excess enthalpies for ternary mixtures at pH 2 and 6 for nitroimidazoles, clarithromycin and lansoprazole

Table 5.66. Experimental and calculated values of excess enthalpies for ternary mixtures at pH 2 and 6 for nitroimidazoles, roxithromycin and lansoprazole