NOTATIONS

Fr-A Flow of water from room to part A
F_{A-B} Flow of water from part A to part B
P_A Pressure in part A
\delta P_A Change in pressure P_A
P_B Pressure in part B
t_1 Instant of time when U-tube receives increment of water
t_2 Transition time
t_3 Instant when state of equilibrium is achieved
Y Distance of ball from earth
V Velocity of ball
A Acceleration of ball
Q_1 Volumetric inflow rate
A Cross sectional area of the tank
t Level of liquid in the tank
e Error
v Position of valve
Q_2 Volumetric outflow rate
L_s Set point
i Integral of error
cv Valve coefficient
q Volumetric netflow rate
\rho Liquid density
a_g Acceleration of gravity
X Classical set of objects
x Member of set X
A Fuzzy set
\mu_A(x) Membership grade of x in A
A_{\alpha} \alpha- cut of A
U Union operator
A \cup B Union of sets A and B
h(R) Height of fuzzy relation R
R(X,Y) A fuzzy relation between X and Y
PoQ Composition of fuzzy relations P and Q

P_a Atmospheric pressure

P Pressure at the bottom of the tank

y_i^h State of the ith neuron in the hth layer

w_{ji}^h Weight of the connection from ith neuron in layer h to the jth neuron in layer $h + 1$

y_j^{h+1} State of the jth neuron in the $(h + 1)$th layer

$E(w)$ Least mean square error for a weight vector w.

$y_{j,c}^H(w)$ State of output node j in layer H in input output case c.

$d_{j,c}$ Desired state of node j in case c.

ϵ A positive constant

α Momentum coefficient

t Number of iteration currently in progress

FV_{ji} Fuzzy value taken by antecedent c_i in the jth rule