List of Tables

1.1 Physical properties of Sun

1.2 Classification of magnetic storms on the basis of magnetic indices

2.1 The Specifications of KEL IPS-42

2.2 Radar Specifications

2.3 Satellite frequencies

4.1 Flare classification

4.2 Flare classification is based on Hα spectral observations
List of Figures

1.1 Sunspot cycle variations from 1940 to 2020 (from NASA website)

1.2 Schematic diagram of Earth's magnetosphere

1.3 Geomagnetic storm recorded at New Delhi on 17 November 1989 showing various phases

1.4 Schematic diagram showing different layers of Earth's atmosphere

1.5 Various layers of the ionosphere and their predominant ion populations are listed at their respective heights above ground.

1.6 Ionograms showing the occurrence of spread F

1.7 Diagram showing the solar wind magnetosphere interaction

2.1 Typical pattern of ionogram obtained from ionosonde located over Trivandrum

2.2 Electron density profile during 24 November, 2001

2.3 A typical vertical plasma drift observed on 25 November 2003 at 3.5 MHz

2.4 Vertical plasma drift at three ionospheric altitudes using three frequencies (top panel) and the corresponding observing altitude (bottom panel) observed using multifrequency HF Doppler radar on 21 February 2006

2.5 A typical diagram showing magnetic field variation obtained from magnetometer located at Tirunelveli

2.6 Five minute average solar wind data (IMF field strength, IMF Bz, solar wind velocity, proton density, temperature observed by ACE satellite during March 1 – 5, 1999 (OMNI Web data, NASA)

2.7 O/N₂ during the super storm that commenced on November 20, 2003.

3.1 (a) Variation of EEJ during 10 quiet days on November 2001. The average values are plotted where the error bars indicate the standard deviation (b) Comparison of EEJ variation from 00-10 LT on 24 November 2001, with the quiet day values, before the prompt penetration event.

3.2 (a-d) Variation of Interplanetary parameters on 24 November 2001
3.3 (a) Variation of IEFY on 24 November 2001. (b) Variation of EEJ on 24 November 2001, along with the quiet day variation for comparison.

3.4 Ionograms from Trivandrum, showing the E_{su} layer variations

3.5 Latitudinal variation of electron density obtained from CHAMP, for 24 November 2001 and 14 November 2001

3.6 EEJ variation during the most quiet days in November, for the entire solar cycle

3.7 EEJ variation during the most disturbed days in November, for the other years in the solar cycle.

3.8 (a-c) Variations in IMF Bz AE index and SYM (H) during November 06-10, 2004

3.9 GUVI O/N2 values for the control day and 8-10 November 2004

3.10 (a-c) Temporal variations of EEJ, foF2 and EIA proxy on 8 November 2004 and the control day

3.11 (a-d) Temporal variations of EEJ, foF2, EIA proxy and post noon foF2 at TRV and SHAR on 9th November 2004 and the control day

3.12 Temporal variations of (a) foF2 and (b) EIA proxy on 10 November 2004 and the control day

4.1 Classification of Solar Flares are classified by their x-ray flux in the 1.0 - 8.0 Angstrom band as measured by the NOAA GOES-8 satellite

4.2 The variations of EUV ratio (EUV flux at peak/EUV flux just before flare start) with position on the solar disc for X class flares

4.3 The variation of X ratio ((X-ray flux at peak/X-ray flux just before flare start) with CMD for several X (left panel), M (middle panel) and C (right panel) class flares.

4.4 The scatter plot of H ratio and UV ratio for X and M class flares during the period 1998-2003.

4.5 The variation of H ratio as a function of X ratio for X and M class flares during the period 1998-2003.
4.6 The variation of H ratio as a function of CMD for X and M class flares during the period 1998-2003.

4.7 The variation of flare induced TEC increment at 4 stations as a function of CMD.

4.8 Latitudinal variation of flare induced TEC increment during summer (left panel) and winter & equinox (right panel) seasons in the Indian region.

5.1 Typical evening vertical drift pattern showing PRE.

5.2 PRE of ionospheric electric field as explained by Farley et al. (1986).

5.3 Time variation of the IMF Bz (top panel), ΔH (middle panel) and V_d (bottom panel) for three quiet days during the year 2004.

5.4 Wavelet periodograms of IMF Bz (top panel), ΔH (middle panel) and V_d (bottom panel) for three quiet days during the year 2004.

5.5 Same as Figure 5.3 but for three disturbed days.

5.6 Same as Figure 5.4 but for three disturbed days.

5.7 Time variation of the IMF Bz (top panel), ΔH (middle panel) and V_d (bottom panel) for two quiet days during the year 2005.

5.8 Wavelet periodograms of IMF Bz (top panel), ΔH (middle panel) and V_d (bottom panel) for two quiet days during the year 2005.

5.9 Same as Figure 5.7 but for two disturbed days.

5.10 Same as Figure 5.8 but for two disturbed days.

5.11 Auroral electrojet index (line plot and periodogram) for January 11 and February 24, 2004

6.1 (a-c) EEJ induced surface magnetic filed, Radar measured drifts (V_d) and Ionosonde measured vertical drift (dh'/dt), during for the year 2004.

6.2 (a-c) EEJ induced surface magnetic filed, Radar measured drifts (V_d) and Ionosonde measured vertical drift (dh'/dt), during for the year 2006.

6.3 h'F variations for the years 2004 and 2005.