CONTENTS

Chapter 1 Introduction [1-38]

1.1 Background information and importance of the work
1.2 Neutron production reactions
 1.2.1 Different types of neutron sources
 1.2.1.1 Radioactive based (α, n) sources
 1.2.1.2 Radioactive based (γ, n) sources
 1.2.1.3 The (p, n) reaction as a source of neutrons
 1.2.1.4 The (d, n) reaction
1.3 14 MeV neutron generator
 1.3.1 Radio Frequency ion source
 1.3.2 Ion Accelerating Column
 1.3.3 High Voltage Unit
 1.3.4 Vacuum System
 1.3.5 Tritium target Assembly
1.4 Electron Accelerators
 1.4.1 6 MeV RacetTrack Microtron
 1.4.2 6 MeV accelerator based neutron source
1.5 Principle of Neutron Activation Analysis
1.6 Nuclear reaction mechanism for particle induced Reactions
 1.6.1 Direct Reactions
 1.6.2 Decay of Compound Nucleus
 1.6.2.1 Weisskopf-Ewing Theory
 1.6.2.2 Hauser-Feshbach Theory
 1.6.3 Pre-Equilibrium Emission
 1.6.3.1 Exciton Model
 1.6.3.2 Two-component exciton model
 1.6.3.3 Kalbach-Mann Systematic
1.7 Level densities in nuclei
 1.7.1 Constant temperature Model
 1.7.2 The Fermi gas Model
1.7.3 The Back-Shifted Fermi gas Model
1.7.4 Microscopic Level Densities
1.7.5 The Generalized Super fluid Model
1.8 EMPIRE and TALYS nuclear reaction model codes
1.9 Monte Carlo Based FLUKA Simulation
 1.9.1 Transport
 1.9.2 Cross sections
1.10 Gamma detectors and spectroscopy
 1.10.1 High Purity Germanium semiconductor detector and spectroscopy
 1.10.2 Scintillation detector and spectroscopy
1.11 Summary of the thesis
References

Chapter 2 Measurement of cross section for $^{63}\text{Cu}(n, 2n)^{62}\text{Cu}$, $^{55}\text{Fe}(n, 2n)^{53m+g}\text{Fe}$ and $^{138}\text{Ba}(n, p)^{138}\text{Cs}$ reactions at 14.8 MeV neutrons [39-53]
 2.1 Introduction
 2.2 Sample Preparation
 2.3 Experimental Procedure
 2.4 Data Analysis, measurement of radioactivity, uncertainty and deviation factor
 2.5 Theoretical calculations for cross sections
 2.6 Results and Discussion
 2.6.1 $^{63}\text{Cu}(n, 2n)^{62}\text{Cu}$ reaction
 2.6.2 $^{55}\text{Fe}(n, 2n)^{53m+g}\text{Fe}$ reaction
 2.6.2 $^{138}\text{Ba}(n, p)^{138}\text{Cs}$ reaction
 2.7 Uncertainty and deviation factor in cross sections
 2.8 Conclusion
References

Chapter 3 Measurement and estimation of isomeric cross section of $^{137}\text{Ba}(n, n')^{137m}\text{Ba}$ reaction in the energy range 1 keV to 4 MeV using accelerator based neutron source [54-69]
 3.1 Introduction
3.2 Sample preparation
3.3 Experimental procedure
3.4 Data analysis
3.5 Determination of uncertainty and deviation factor
3.6 Theoretical calculations for cross sections
3.7 Results and Discussion
3.8 Conclusion
References

Chapter 4 Measurement and estimation of cross section of (n, γ) reactions for, Vanadium, Iodine, Manganese, Copper and Sodium in the energy range 1 keV to 4 MeV using accelerator based neutron source [70-96]

4.1 Introduction
4.2 Sample preparation
4.3 Experimental method
4.4 Data analysis
4.5 Theoretical calculations for cross sections
4.6 Results and Discussion
 4.6.1 127I(n, γ)128I reaction
 4.6.2 51V(n, γ)52V reaction
 4.6.3 23Na(n, γ)24Na reaction
 4.6.4 55Mn(n, γ)56Mn reaction
 4.6.5 65Cu(n, γ)66Cu reaction
4.7 Conclusion
References

Chapter 5 Theoretical estimation of double differential cross sections at the energy range from 1 MeV to 100 MeV neutrons for natural Uranium, Plutonium and Concrete [97-165]

5.1 Introduction
5.2 Concept and importance of double differential cross section
5.3 Angular distribution and double differential cross sections: A calculation approach by TALYS-1.2
5.4 Results and Discussion
5.4.1 Natural Uranium
5.4.2 Plutonium
5.4.3 Concrete
 5.4.3.1 Aluminium
 5.4.3.2 Calcium
 5.4.3.3 Carbon
 5.4.3.4 Oxygen
 5.4.3.5 Silicon

5.5 Conclusion
References

Chapter 6 Development and calibration of gamma radiation based technique for the detection of Uranium from sedimentary rocks [166-188]

6.1 Introduction
6.2 Sample preparation
6.3 Detection and possible estimation of the concentration of uranium from different sedimentary rock samples using 14 MeV neutron activation analysis
6.4 Development and calibration of the gamma ray spectroscopy for the detection of specific gamma radiation from uranium
6.5 Detection of U-238 from sedimentary rocks by recording specific gamma radiation
6.6 Conclusion
References

List of publications [189]