<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>three-dimensional</td>
</tr>
<tr>
<td>A</td>
<td>Ampere, area (m2)</td>
</tr>
<tr>
<td>Ac</td>
<td>annual expenses (Rs.)</td>
</tr>
<tr>
<td>Ah</td>
<td>Ampere hour</td>
</tr>
<tr>
<td>ALCC</td>
<td>annual life cycle cost</td>
</tr>
<tr>
<td>ANN</td>
<td>artificial neural network</td>
</tr>
<tr>
<td>ASCS</td>
<td>additional suction creation system</td>
</tr>
<tr>
<td>B</td>
<td>impeller width (m), best efficiency point</td>
</tr>
<tr>
<td>BCR</td>
<td>benefit/cost ratio</td>
</tr>
<tr>
<td>BEP</td>
<td>best efficiency point</td>
</tr>
<tr>
<td>BGET</td>
<td>border green energy team</td>
</tr>
<tr>
<td>bhp</td>
<td>brake horse power</td>
</tr>
<tr>
<td>BR</td>
<td>blade rounded</td>
</tr>
<tr>
<td>BWRO</td>
<td>brackish water reverse osmosis</td>
</tr>
<tr>
<td>C</td>
<td>prediction coefficient, constant</td>
</tr>
<tr>
<td>CFD</td>
<td>computational fluid dynamics</td>
</tr>
<tr>
<td>Co</td>
<td>initial cost (Rs.)</td>
</tr>
<tr>
<td>CRF</td>
<td>capital recovery factor</td>
</tr>
<tr>
<td>CSHN</td>
<td>combined suction head number</td>
</tr>
<tr>
<td>CW</td>
<td>civil works</td>
</tr>
<tr>
<td>D</td>
<td>impeller diameter (m), cross-diffusion term</td>
</tr>
<tr>
<td>d</td>
<td>annual discount rate (%)</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>EGE</td>
<td>energy generation equipment</td>
</tr>
<tr>
<td>ERDs</td>
<td>energy recovery devices</td>
</tr>
<tr>
<td>ESP</td>
<td>engineering studies program</td>
</tr>
<tr>
<td>ETC</td>
<td>environmental tectonics corporation</td>
</tr>
<tr>
<td>F</td>
<td>coefficient</td>
</tr>
<tr>
<td>(\vec{F})</td>
<td>body force (N)</td>
</tr>
</tbody>
</table>
f frequency (Hz)
f/s feet per second
FEM finite element method
FFT fast Fourier transform
ft foot
FVM finite volume method
G generation
GVA guide vane angle
GW gigawatt
g acceleration due to gravity (m/s²)
H head (m), depth of draft tube (m)
h head correction factor
HPRTs hydraulic power recovery turbines
Hz Hertz
I current (A), unit tensor
IGC induction generator controller
IRR internal rate of return
IS Indian standard
ISO international organization for standardization
K, K₁ constant
k turbulent kinetic energy (m²/s²)
KBL Kirloskar brothers limited
kHz kilohertz
kW kilowatt
kWh kilowatt hour
L sound level (dB), equipment life, length of draft tube
LPM liter per minute
lps liter per second
m meter
\(\dot{m}^+ \) vaporization rate per unit volume (kg/s-m³)
\(\dot{m}^- \) condensation rate per unit volume (kg/s-m³)
MATLAB matrix laboratory
mm milli meter
MNRE ministry of new renewable energy
MRF moving reference frame
MW Megawatt
N rotational speed (rpm)
n rotational speed (rps), number of samples
NACA National advisory committee for aeronautics
N_p number of phases
NPV net present value
N_s specific speed
P power (W)
p static pressure (N/m²), number of poles
Pa Pascal
PAT pump as turbine
pcd pitch circle diameter (m)
PISO pressure-implicit with splitting of operators
PRVs pressure reducing valves
psi pound per square inch
PV photovoltaic
PVC polyvinyl chloride
Q Discharge (m³/s), sound intensity (µPa)
q discharge correction factor
R radius of blade rounding (m)
r volume fraction
RNG renormalization group
RO reverse osmosis
rpm revolutions per minute
rps revolutions per second
S source term
s second
SHP small hydropower
SIMPLE semi-implicit method for pressure-linked equations
SIMPLEC semi-implicit method for pressure-linked equations-consistent
SS stainless steel
SST shear stress transport
SWRO seawater reverse osmosis
t blade thickness (m), time (s)
TaTEDO Tanzania traditional energy development organization
TWh terawatt-hour
U velocity (m/s)
u tangential velocity of impeller (m/s)
UNIDO United Nations industrial development organization
UR unrounded
URANS unsteady Reynolds-averaged Navier-Stokes
US United States
USD United States dollar
usgpm United States gallons per minute
V voltage
v absolute velocity
VOS variable operating strategy
W relative velocity
WDN water distribution network
Y_M contribution of the fluctuating dilatation
Z datum head (m)

Greek symbols
α angle made by absolute velocity, phase, inverse effective Prandtl number
β blade angle, phase
Γ effective diffusivity, mass flow rate per unit volume
γ specific weight (N/m³)
ε turbulent dissipation rate (m²/s³)
η efficiency (%)
µ viscosity (Ns/m²), micrometer
π power number, constant
ρ density of water (kg/m³)
σ Thoma’s cavitation factor, turbulent Prandtl number
\(\phi \) discharge number
\(\varphi \) impeller diameter
\(\chi \) relation between best efficiency and specific speed of pump
\(\psi \) head number
\(\Omega \) characteristic swirl number
\(\omega \) specific dissipation rate \((m^2/s^3) \)
\(\overline{T} \) stress tensor
\(\partial \) partial differential operator
\(\Delta \) change in parameter
\$ \) dollar sign

Subscripts

1 inlet
2 outlet
atm atmosphere
av average
B vapor bubble
b blade, best efficiency point, buoyancy
BEP best efficiency point
con condensation
cr critical
crit critical
e kinetic energy losses, exit
f fundamental, flow component, fluid
g Generator, vapor bubble
h hydraulic
i hydraulic losses in impeller, instantaneous, input
k turbulence kinetic energy \((m^2/s^2) \)
l leakage
m motor, mechanical losses
n net
nt net
nuc nucleation
o	overall, reference standard, output
p	pump, peak
r	relative, rated value
s	specific
T	turbine
t	turbine, turbulent
u	tangential direction
v	volute losses, vapor bubble
vap	vaporization
w	whirl component