References


51. Konate, L. *et al.* Variation of *Plasmodium falciparum* msp1 block 2 and msp2 allele prevalence and of infection complexity in two neighbouring Senegalese villages with different transmission conditions. 93, 21-28 (1999).


58. Ofosu-Okyere, A. *et al.* Novel *Plasmodium falciparum* clones and rising clone multiplicities are associated with the increase in malaria morbidity in Ghanaian children during the transition into the high transmission season. *Parasitology.* 123, 113-123 (2001).


84. Dodoo, D. et al. Levels of Antibody to Conserved Parts of Plasmodium falciparum Merozoite Surface Protein 1 in Ghanaian Children Are Not


95. Sutton PL, Clark EH, Silva C & Branch OH. The *Plasmodium falciparum* merozoite surface protein-1 19 KD antibody response in the Peruvian Amazon predominantly targets the non-allele specific, shared sites of this antigen. Malar J 2010; 9:3.


103. Lyke, K.E. et al. Serum Levels of the Proinflammatory Cytokines Interleukin-1 Beta (IL-1β), IL-6, IL-8, IL-10, Tumor Necrosis Factor Alpha, and IL-12(p70) in Malian Children with Severe Plasmodium falciparum Malaria and Matched Uncomplicated Malaria or Healthy Controls. Infection and Immunity, 72, 5630-5637 (2004).
110. Bejon, P. Early Gamma Interferon and Interleukin-2 Responses to Vaccination Predict the Late Resting Memory in Malaria-Naïve and Malaria-Exposed Individuals. Infection and Immunity, 74, 6331-6338, (2006).


167. Taniguchi, M., Kawabata, M. KIR3DL1/S1 genotypes and KIR2DS4 allelic variants in the AB KIR genotypes are associated with Plasmodium-positive individuals in malaria infection. *Immunogenetics*, 61, 717-30 (2009).


List of publications


4) Lourembam, S.D., Sawian, C.E., Baruah, S. Cytokines mediated cellular immunity in *Plasmodium falciparum* infection in populations of Assam. (Manuscript).