CONTENTS

[List of Tables] 1-12

List of Tables x

List of Figures xii

List of Publications xvi

1 Introduction 1-12

1.1 Background of the study 1

1.2 Objectives 7

1.3 A Brief Survey on Reliability Models 8

1.4 Organization of the thesis 10

2 Cascade System with Random Attenuation Factor 13-21

2.1 Introduction 13

2.2 Mathematical Formulation 14

2.3 The Distribution of k is Uniform 15

2.3.1 Exponential Stress-Strength 15

2.3.2 Weibull Stress-Strength 17

2.3.3 Exponential Strength and Gamma Stress 18

2.4 Graphical Representations 18

2.5 Results and Discussions 21

3 Mixture of Distributions in Cascade System 22-44

3.1 Introduction 22
3.2 Mixture of Distributions: An \(n \)-Cascade System

3.3 Stress- Strength follows Mixture of Distributions
 3.3.1 Mixture of two Exponentials: Cascade System
 (a) Particular case of mixture of two Exponentials: Cascade System
 3.3.2 Mixture of two Rayleighs: Cascade System
 (a) Particular case of mixture of two Rayleighs: Cascade System
 3.3.3 Mixture of two Weibulls: Cascade System
 (a) Particular case of mixture of two Weibulls: Cascade System

3.4 Graphical Representations

3.5 Results and Discussions

4 Cascade Reliability in Different Types of Failure Models
 4.1 Introduction
 4.2 Development of the Mathematical Models
 4.3 Stress-Strength follows Specific Distributions
 4.3.1 Exponential Stress-Strength Distribution
 4.3.2 Rayleigh Stress-Strength Distribution
 4.4 Graphical Representations
 4.5 Results and Discussions

5 A Cascade Model with Random Parameters
 5.1 Introduction
 5.2 Notations and Formulation of the Model
 5.3 Random Strength Parameter
 (a) Uniform Prior for \(\lambda \)
 (b) Two-Point prior for \(\lambda \)

viii
5.4 Random Stress Parameter

(a) Uniform Prior for μ
(b) Two-Point prior for μ

5.5 Graphical Representations

5.6 Results and Discussions

6 Cascade System with $P(X<Y<Z)$

6.1 Introduction

6.2 Mathematical Formulation

6.3 Stress-Strength follows Specific Distributions

6.3.1 Exponential Stress-Strength

6.3.2 Rayleigh Stress-Strength

6.3.3 Lindley Stress-Strength

6.3.4 Both Strengths are One- parameter Exponential and Stress follows Lindley Distributions

6.3.5 Both Strengths are One- parameter Exponential and Stress follows Two-parameter Gamma Distributions

6.4 Graphical Representations

6.5 Results and Discussions

7 Conclusion

7.1 Summary of the Thesis

7.2 Future Works

References

Appendix
List of Tables

Table 2.1 Values of R_1, R_2, R_3 when Stress-Strength follows Exponential Distribution 100
Table 2.2 Values of R_1, R_2 when Stress-Strength follows Weibull Distribution 101
Table 2.3 Values of R_1, R_2 when Strength follows Exponential and Stress follows Gamma Distribution 102
Table 3.1 Reliabilities R_1, R_2 and R_3 when Stress and Strength are mixture of Exponential Distribution 103
Table 3.2 Reliabilities R_1, R_2 and R_3 when Stress and Strength are mixture of Rayleigh Distribution 104
Table 3.3 Reliabilities R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when shape parameters are equal) 105
Table 3.4 Reliabilities R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when scale parameters are equal) 106
Table 4.1 Values of $R(1), R(2), R(3)$ and R_3 for Failure model I where Stress-Strength Distributions are Exponential 107
Table 4.2 Values of $R(1), R(2), R(3)$ and R_3 for Failure model II where Stress-Strength Distributions are Exponential 108
Table 4.3 Values of $R(1), R(2), R(3)$ and R_3 for Failure model III where Stress-Strength Distributions are Exponential 109
Table 4.4 Values of $R(1), R(2), R(3)$ and R_3 for Failure model I where Stress-Strength Distributions are Rayleigh 110
Table 4.5 Values of $R(1), R(2), R(3)$ and R_3 for Failure model II where Stress-Strength Distributions are Rayleigh 111
Table 4.6 Values of $R(1), R(2), R(3)$ and R_3 for Failure model III where Stress-Strength Distributions are Rayleigh 112
Table 5.1 Values of R_1, R_2 for Exponential Stress-Strength when Strength parameter λ is random and Uniformly distributed in the range (a,b) 113
Table 5.2 Values of R_1, R_2 for Exponential Stress-Strength when Strength parameter λ is random having Two-Point Distribution 114
Table 5.3 Values of R_1, R_2 for Exponential Stress-Strength when Stress parameter μ is random and Uniformly distributed in the range (c,d) 115
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Values of R_1, R_2 for Exponential Stress-Strength when Stress parameter μ is random having Two-Point Distribution</td>
</tr>
<tr>
<td>6.1</td>
<td>Values of $R(1)$, $R(2)$, $R(3)$ and R_3 when Stress-Strength follows Exponential Distribution</td>
</tr>
<tr>
<td>6.2</td>
<td>Values of $R(1)$, $R(2)$, $R(3)$ and R_3 when Stress-Strength follows Rayleigh Distribution</td>
</tr>
<tr>
<td>6.3</td>
<td>Values of $R(1)$, $R(2)$, $R(3)$ and R_3 when Stress-Strength follows Lindley Distribution</td>
</tr>
<tr>
<td>6.4</td>
<td>Values of $R(1)$, $R(2)$, $R(3)$ and R_3 when both Strength follows One-Parameter Exponential and Stress follows Lindley Distributions</td>
</tr>
<tr>
<td>6.5</td>
<td>Values of $R(1)$, $R(2)$, $R(3)$ and R_3 when both Strength follows One-Parameter Exponential and Stress follows Two-Parameter Gamma Distributions</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Exponential Stress-Strength: Graph for R_2</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Weibull Stress-Strength: Graph for R_1 for different fixed values of θ, a and λ i.e. $R_1(\theta, a, \lambda)$</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Exponential Strength and Gamma Stress: Graph for R_1 for different fixed values of λ i.e. $R_1(\lambda)$</td>
<td>20</td>
</tr>
<tr>
<td>3.1(a)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Exponential Distribution</td>
<td>37</td>
</tr>
<tr>
<td>3.1(b)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Exponential Distribution</td>
<td>37</td>
</tr>
<tr>
<td>3.1(c)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Exponential Distribution</td>
<td>37</td>
</tr>
<tr>
<td>3.1(d)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Exponential Distribution</td>
<td>37</td>
</tr>
<tr>
<td>3.1(e)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Exponential Distribution</td>
<td>38</td>
</tr>
<tr>
<td>3.1(f)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Exponential Distribution</td>
<td>38</td>
</tr>
<tr>
<td>3.2(a)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Rayleigh Distribution</td>
<td>38</td>
</tr>
<tr>
<td>3.2(b)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Rayleigh Distribution</td>
<td>38</td>
</tr>
<tr>
<td>3.2(c)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Rayleigh Distribution</td>
<td>39</td>
</tr>
<tr>
<td>3.2(d)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Rayleigh Distribution</td>
<td>39</td>
</tr>
<tr>
<td>3.2(e)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Rayleigh Distribution</td>
<td>39</td>
</tr>
<tr>
<td>3.2(f)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Rayleigh Distribution</td>
<td>39</td>
</tr>
<tr>
<td>3.3(a)</td>
<td>Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when shape parameters are equal)</td>
<td>40</td>
</tr>
</tbody>
</table>
Fig. 3.3(b) Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when shape parameters are equal)

Fig. 3.3(c) Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when shape parameters are equal)

Fig. 3.3(d) Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when shape parameters are equal)

Fig. 3.3(e) Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when shape parameters are equal)

Fig. 3.3(f) Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when shape parameters are equal)

Fig. 3.4(a) Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when scale parameters are equal)

Fig. 3.4(b) Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when scale parameters are equal)

Fig. 3.4(c) Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when scale parameters are equal)

Fig. 3.4(d) Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when scale parameters are equal)

Fig. 3.4(e) Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when scale parameters are equal)

Fig. 3.4(f) Graph of R_1, R_2 and R_3 when Stress and Strength are mixture of Weibull Distribution (when scale parameters are equal)

Fig. 4.1(a) Exponential Stress-Strength for model I: Graph for R_1, R_3 for fixed values of θ_1

Fig. 4.1(b) Exponential Stress-Strength for model I: Graph for R_1, R_3 for fixed values of θ_1

Fig. 4.2(a) Exponential Stress-Strength for model II: Graph for $R(1), R(2), R(3)$ and R_3

Fig. 4.2(b) Exponential Stress-Strength for model II: Graph for $R(1), R(2), R(3)$ and R_3

Fig. 4.3(a) Exponential Stress-Strength for model III: Graph for R_1, R_3

Fig. 4.3(b) Exponential Stress-Strength for model III: Graph for R_1, R_3
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4(a)</td>
<td>Rayleigh Stress-Strength for model I: Graph for R_1, R_3 for fixed values of σ_1</td>
</tr>
<tr>
<td>4.4(b)</td>
<td>Rayleigh Stress-Strength for model I: Graph for R_1, R_3 for fixed values of σ_1</td>
</tr>
<tr>
<td>4.5(a)</td>
<td>Rayleigh Stress-Strength for model II: Graph for $R(1), R(2), R(3)$ and R_3</td>
</tr>
<tr>
<td>4.5(b)</td>
<td>Rayleigh Stress-Strength for model II: Graph for $R(1), R(2), R(3)$ and R_3</td>
</tr>
<tr>
<td>4.6(a)</td>
<td>Rayleigh Stress-Strength for model III: Graph for $R(1), R(2), R(3)$ and R_3</td>
</tr>
<tr>
<td>4.6(b)</td>
<td>Rayleigh Stress-Strength for model III: Graph for $R(1), R(2), R(3)$ and R_3</td>
</tr>
<tr>
<td>5.1(a)</td>
<td>Graph of R_1, R_2 for Exponential Stress-Strength: Strength parameter λ is random and Uniformly distributed in the range (a, b)</td>
</tr>
<tr>
<td>5.1(b)</td>
<td>Graph of R_1, R_2 for Exponential Stress-Strength: Strength parameter λ is random and Uniformly distributed in the range (a, b)</td>
</tr>
<tr>
<td>5.2(a)</td>
<td>Graph of R_1, R_2 for Exponential Stress-Strength: Strength parameter λ is random and have a Two-Point Distribution</td>
</tr>
<tr>
<td>5.2(b)</td>
<td>Graph of R_1, R_2 for Exponential Stress-Strength: Strength parameter λ is random and have a Two-Point Distribution</td>
</tr>
<tr>
<td>5.3(a)</td>
<td>Graph of R_1, R_2 for Exponential Stress-Strength: Stress parameter μ is random and Uniformly distributed in the range (c, d)</td>
</tr>
<tr>
<td>5.3(b)</td>
<td>Graph of R_1, R_2 for Exponential Stress-Strength: Stress parameter μ is random and Uniformly distributed in the range (c, d)</td>
</tr>
<tr>
<td>5.4(a)</td>
<td>Graph of R_1, R_2 for Exponential Stress-Strength: Stress parameter μ is random and have a Two-point distribution</td>
</tr>
<tr>
<td>5.4(b)</td>
<td>Graph of R_1, R_2 for Exponential Stress-Strength: Stress parameter μ is random and have a Two-Point Distribution</td>
</tr>
<tr>
<td>6.1(a)</td>
<td>Graph of $R(1), R(2), R(3)$ and R_3 for different fixed values of λ for Sub-Section 6.3.1.</td>
</tr>
<tr>
<td>6.1(b)</td>
<td>Graph of $R(1), R(2), R(3)$ and R_3 for different fixed values of λ for Sub-Section 6.3.1.</td>
</tr>
</tbody>
</table>
Fig. 6.2(a) Graph of R_1, R_2, R_3 and R_3 for different fixed values of σ_3 for Sub-Section 6.3.2.

Fig. 6.2(b) Graph of R_1, R_2, R_3 and R_3 for different fixed values of σ_3 for Sub-Section 6.3.2.

Fig. 6.3(a) Graph of R_1, R_2, R_3 and R_3 for different fixed values of θ for Sub-Section 6.3.3.

Fig. 6.3(b) Graph of R_1, R_2, R_3 and R_3 for different fixed values of θ for Sub-Section 6.3.3.

Fig. 6.4(a) Graph of R_1, R_2, R_3 and R_3 for different fixed values of θ for Sub-Section 6.3.4.

Fig. 6.4(b) Graph of R_1, R_2, R_3 and R_3 for different fixed values of θ for Sub-Section 6.3.4.

Fig. 6.5(a) Graph of R_1, R_2, R_3 and R_3 for different fixed values of $\mu, \gamma, \lambda, \theta$ for Sub-Section 6.3.5.

Fig. 6.5(b) Graph of R_1, R_2, R_3 and R_3 for different fixed values of $\mu, \gamma, \lambda, \theta$ for Sub-Section 6.3.5.
List of Publications

