Kaushik et al. (1963) have found 63% of the wells in Delhi state, to be bacteriological unfit for human consumption, with 77% showing heavy pollution with a coliform index, above 1,100. Aboo et al. (1968) have studied the well water quality in Bhopal city. They found that water from protected and covered wells had lower Coliform and Enterococci counts as compared to the water from unprotected and uncovered wells to be bacteriological safe for drinking purpose.

Manchanda and Kanwar (1971) have studied the analysis well water in Gurgaon district and reported high concentration of nitrates and potash. Kapoor (1973) has investigated the incidences of “Naru” disease in Ujjain district of Madhya Pradesh. Narayan and Rao (1981) have reported that all the open wells in Warangal town had bacteriological contaminated water. They suggested chlorination in order to improve the well water quality.

Trivedy et al. (1984) have noted that well waters in all the three towns of Satara district of Maharashtra to be rich in solids, carbonates, total hardness, calcium and magnesium in comparison to the surface waters. Lakshmanan et al. (1985) have reported that concentration of uranium to be marginally higher in well water (5.8 mg/l) than bore well waters (4.2 mg/l).

Trivedy and Mathur (1986) have noted very high nitrate content ranging from 5.0 mg/l to 1400 mg/l in ground waters of arid region of Churu district in Rajasthan. Trivedy and Goel (1986) have reported that the hardness is the property of water which prevents the lather formation with soap and increases the boiling points of water.

Agarwal et al. (1991) reported that the higher concentration of nitrate in water causes Methaemoglobinaemia, an infant disease up to 6 months of child. Hedge et al. (1992) reported that many samples had high concentration of
sodium, calcium, chloride, total dissolved solids and total hardness which was the impact of sewage.

Raju (1992) has studied the relationship between electrical conductivity and total dissolved solids. He reported that rapid determination of TDS can be made by measuring the EC of the groundwater. Chauhan and Pathak (1993) have studied the contamination potential in groundwater system due to leaching of these discharges by hospital, domestic and municipal sewage at Rewa.

Govindan and Thanasekaran (1993) have suggested routine monitoring and periodical evaluation as a measure for control of ground and surface water quality in urban and rural water supply scheme. Pandey et al. (1993) studied the sanitary water quality of Bhimtal lake of Kumaun hill. They reported that sodium, potassium and calcium were maximum during Sept. 1990 and decreased steadily during water. Dissolved oxygen, total alkalinity, total solid and total dissolved solids were inversely proportional to BOD and COD.

Nag and Das (1994) have studied the drinking water quality in the Birbhum district of West Bengal. They reported that Na, Ca, Mg, Cr, Pb, Hg, and As are below their permissible limits and K, Cu and Cd are above their permissible limits. Altman and Parizek (1995) have reported that there are various ways as ground water is contaminated such as use of fertilizer in farming.

Nag and Das (1995) have studied the drinking water quality in Puruliya district of west Bengal and reported sodium, calcium, chromium, copper, lead, mercury and arsenic below their permissible level but the presence of potassium, magnesium, manganese, iron, zinc and cadmium above their maximum admissible concentration or guideline value of WHO in several samples.
Nawlakhe *et al.* (1995) have reported that the ground water quality of rural areas in Shivpuri district of Madhya Pradesh and observed that nitrate fluoride, TDS and hardness to be the problem parameters in order of dominance. They suggested reverse Osmosis, electro dialysis, in exchange and solar distillation to be effective process for removal of such multiple problem parameters.

Subbarao and Subbarao (1995) have studied the conductivity and chloride concentration. They reported that many groundwater sources have crossed the health criteria due to urban factors like landfill leachate, domestic sewage and septic tanks. Suryanarayana (1995) has suggested that the water tends to be more alkaline when it possesses carbonates.

Datta and Natrajan (1996) have analysed the drinking well and tap water quality in connection with the high incidence of gastrointestinal diseases and cholera epidemics in Pondicherry. Richariya and Mishra (1998) have reported that groundwater has become a great problem in Rewa area according to bacterial pollution due to sewage of polluted surface water from industries, mining domestic wastes, causing various water borne diseases.

Verma and Thakur (1998) have studied the water quality of different water sources viz., municipal water supply, wells, borewells and river water at Ghatsila (Jamsedpur, Bihar), also indicate that the industrial influents released by a giant metal processing unit contaminate the water sources and make them unsuitable for drinking purpose. Kumar and Siddiqui (1998) have studied the quality of drinking water in and around Ranchi.

Bhattacharya *et al.* (1999) have studied the heavy metals in surface water and bed sediments of a few drinking water sources in Guwahati and found that in many cases, the contents of heavy metals were in excess of World
Health Organisation for drinking water. Chand (1999) has studied the fluoride and human health. He reported that intake of continued use of fluoride contaminated water may cause gastrointestinal complains, namely loss of appetite, nausea, vomiting, pain in the stomach, constipation and intermittent diarrhoea and flatulence in expectant and lactating mothers, hardworking young adult, foetus and children.

Pande (2000) has studied of surface water, sediments and ground water of river Ramganga at Moradabad. Aswathanarayana (2002) has studied the utility of groundwater available is dependent on its physical, chemical and bacteriological properties. Spatial and temporal distribution of groundwater quality is a function of climate (precipitation and evaporation), topography (slope which affects the residence time of groundwater), geology of the area (mineralogical and chemical composition of rocks and soils with which groundwater is in contact) etc.

Shrivastava and Patil (2002) have reported that the high pH value induces the formation of trihalomethanes, which are toxic, while pH below 6.5 starts corrosion in pipe thereby releasing toxic metals such as zinc, lead, cadmium and copper. Gura (2003) has studied the Physico-chemical and Bacteriological quality of waters at Tadipalli Mandal of Guntur District, Andhra Pradesh.

Atiqur (2003) has studied the water quality from Jal Nigam hand pumps in Aligarah city. Thirumathol and Shivakumar (2003) studied the ground quality of Swaminathapuram Dingigul district, Tamil Nadu. Kaplay and Patode (2004) have studied the groundwater pollution due to industrial effluent at Tuppa, New Nanded, Maharashtra.
Murugesan et al. (2004) have analysed the comparative study of groundwater resources of East to West Region of Chennai. Sharma et al. (2005) have analysed the quality of the ground water of Sanganer Tehsil in Jaipur District. Mariappan et al. (2005) have reported that the quality of groundwater is more significant as the case of quantity for all purposes.

Suthar et al. (2005) have conducted study of ground water quality of Shri Ganga Nagar city, Rajasthan. Agarkar and Kulkarni (2005) have evaluated the status of drinking water quality in school in Buldana District of Maharashtra. Sandhya (2005) has studied the presence of iron in groundwater can be attributed to the dissolution of rock and minerals (pyroxenes, pyrite, magnetite and haematite), acid mine drainage, sewage and industrial effluents.

Harish et al. (2006) have reported status of drinking water quality in Tarikere Taluk with special reference to fluoride concentration. Kumar et al. (2007) have studied spatial variation of drinking water quality and inter elemental correlation in Lower Bhawani river, Tamilnadu.

Thangarajan et al. (2007) have reported that the lower concentration of fluoride (<0.5 mg/l) causes dental carries, while higher concentration (beyond 1.5 mg/l) causes dental and skeletal fluorosis. Vaishnav et al. (2007) have reported that the Industries consume large quantities of water, consequently depleting the available resources and at the same time produce wastewater containing organic chemicals and toxic heavy metals depending upon the various chemicals used in the industries.

Hujare (2008) has reported that the alkalinity was maximum value in April (summer) due to increase in bicarbonates in the water. Swarna (2008) has studied the TDS in groundwater can also be due to natural sources such as sewage, urban runoff and industrial wastes.
Narsinhna et al. (2009) have studied the Major Ion Geochemistry and Fluoride distribution of groundwater in Chityal area, Nalgonda District, Andhra Pradesh, India. Elizabeth and Revathy (2009) have studied the water quality analysis of steam mill effluent and its impact on Bore Wells in Coimbatore, India.

Mahesswaran and Elangovan (2009) have studied the quality assessment of groundwater in Salem District, Tamil Nadu, India. Mondal et al. (2009) have reported that the highest values of Fluoride were found in middle part of the study area and are related to the occurrence of fluoride rich rocks and their chemical kinetic behaviour with groundwater.

Kanhan et al. (2009) have studied the comparative study of Drinking and Irrigation water quality of reservoirs: A case study from Kerala, India.

Reza and Singh (2009) have studied the Physico-Chemical Analysis of Ground Water in Angul-Talcher Region of Orissa, India.

Kumari and Jha (2009) have studied the assessment of drinking water quality in and around Patna town and they found that the maximum concentration of hardness in summer season (pre monsoon). Kavitha and Elangovan (2010) have studied the ground water quality characteristics at Erode district, Tamil Nadu, India.

Rajkumar et al. (2010) have studied the groundwater contamination due to municipal solid waste disposal–AGIS based study in Erode city. Rajamanickam and Nagan (2010) have studied the groundwater quality modelling of Amaravathi river basin of Karur district, Tamil Nadu.
Chatterjee et al. (2010) have reported that the contamination of groundwater by heavy metals has been given much attention due to their low biodegradability and toxic effects.

Prajapati and Rokde (2011) have studied the quality of drinking water of potable water of southern Indore city, M.P., India. Singh et al. (2011) have studied the assessment of groundwater resources of Panandhro lignite mining region, Gujarat state, India.

Prajapati and Bhagore (2012) have studied the microbiological study of drinking water of Dhar city and adjacent villages. Mishra et al. (2012) have studied the assessment of groundwater quality in Shivpuri town, Madhya Pradesh, India. They reported the WQI range from 30.80 to 70.58, 34.58 to 70.22 and 33.02 to 69.97 in rainy, winter and summer seasons respectively.

Dhanasekar and Partheeban (2012) have studied the assessment of Physico-chemical characteristics of groundwater in Chennai. They found the Iron varied from 0.01 mg/l to 4 mg/l in post monsoon season.

Nagalambika et al. (2012) have studied on ground waters of Mysore city with special reference to Fluoride concentration. Reddy et al. (2012) have studied the groundwater quality assessment of Bhaskar Rao Kunta Watershed, Nalgonda district, Andhra Pradesh, India. They found that the fluoride range from 2 mg/l to 4 mg/l.

Kumari and Kumar (2013) have studied the Physico-chemical analysis of ground water in five blocks of Mahendra Garh District, Haryana (India). Bharati (2013) has studied that the potable groundwater quality in Jorve village of Sangamner, Maharashtra, India: focus on Fluoride.
Nirgude et al. (2013) have studied the Physico-chemical characteristics and quality assessment of some ground water samples from Vapi Town, Gujarat, India.

Narsimha et al. (2013) have studied the Evaluation of groundwater quality and its suitability for drinking purposes in Gunthakal area, Ananthapur district, Andhra Pradesh, India. Florence (2013) has studied the ground water quality assessment of Gangavalli Taluk, Salem district, Tamil Nadu, India, using multivariate statistical techniques.

Hazarika and Bhuyan (2013) have studied the fluoride, arsenic and iron content of groundwater around six selected tea gardens of Lakhimpur district, Assam, India. Nirmala et al. (2013) have studied the Physico-chemical analysis of selected groundwater samples of Tumkur district, Karnataka. Narsimha et al. (2013) have studied the Hydro chemical concept of groundwater in and around Atmakuru area, Anantapur district, Andhra Pradesh, India.

Shrivastava and Pandey (2013) have studied the Physico-chemical and microbiological quality evaluation of groundwater for human domestic consumption in adjoining area of Omti Nallah, Jabalpur (M. P.), India. Shende et al. (2013) studied the Laboratory studies on water quality assessment of groundwater of open dug wells and surface water of Lake Waddepally in Warangal city, India. Hassan et al. (2013) studied the Physico-chemical assessment of groundwater quality of Waluj industrial area, Aurangabad, Maharashtra.

Chaudhari et al. (2013) studied the Physico-chemical assessment status of ground water of some villages of Petlad Tahsil. Kumar et al. (2013) studied the Urbanisation impact of groundwater quality in Cuddalore district, East
Coast of India. Verma et al. (2013) studied the Evaluation of ground water quality in Lucknow, Uttar Pradesh.