List of Figures

1.2.1. Block diagram of the experimental arrangement of the method of extraction ... 3
1.2.2. Schematic diagram of a VSM setup ... 4
1.2.3. Schematic diagram of a AFGM / AGM ... 6
1.2.4. Diagram of a SQUID ... 7
1.2.5. Block diagram of Pulsed Field Magnetometer ... 8

2.1.1. Schematic diagram of the whole set-up ... 23
2.1.2. Basic multiplication circuit ... 24
2.1.3. Constant current source ... 25
2.1.4. Counter to ensure that the integration is over a whole number of complete cycle of the reference signal. ... 26
2.1.5. Zero-compensation circuit ... 27
2.1.6. Integrator and master-slave sample-and-hold circuits for capturing the final value at the end of an integration cycle ... 28
2.1.7. Schematic output waveforms from the controls and sample and hold systems ... 29
2.1.8. Output versus peak-to-peak input voltages (in Volts) for different phase angles. The peak-to-peak amplitude of the reference signal is 1 V. Frequency is 137 Hz. The lines represent fitted parameters and the raw data is shown using symbols. The fitted functions are shown alongside each graph. ... 30
2.1.9. Phase (difference between reference and input) versus output for different input voltages. Frequency is 137 Hz and peak-to-peak amplitude of the reference signal is 1 V. ... 32
2.1.10. Gain versus frequency response. The input is 20 mV ... 33
2.1.11. Standard deviation of the final output plotted against the disturbing signal frequency. The instrument is locked at 105 Hz. The signal to disturbing signal ratio for this data is 1. ... 36
2.1.12. Photograph of the component-side of the circuit board. The small vertical metal tube near the right edge contains the LED-LDR pair. ... 37

2.2.1. Block circuit diagram of digital output bit using PHOENIX kit ... 38
List of Figures

2.2.2. Digital input converter diagram. The transistor used here is BC108. 39
2.3.1. Lock-in-amplifier circuit diagram 41
2.3.2. (a) Waveforms of the input signal, reference signal and (b) waveform of the multiplied output signal 42
2.3.3. Input voltage ($v_{in}(p-p)$) vs output voltage (V_{DC}) for different input signal frequencies. The frequencies are 239Hz, 1.5 KHz, 5KHz, 10KHz, 15KHz and 20KHz respectively. The phase difference has been kept 0° between input and reference signal 43
2.3.4. Input voltage ($v_{in}(p-p)$) vs output voltage (V_{DC}) curve for different phase angles between input and reference signals. The input signal frequency is kept at 189 Hz 44
2.3.5. Phase difference versus output voltage for different input signal ($v_{in}(p-p)$) voltages. frequency of the input signal is 189 Hz 45
2.3.6. Inf versus output voltage (mV). The input signal amplitude is kept at 5 V(p-p). 45
2.3.7. Output voltage (mV) versus noise signal (V_{p-p}). The signal is locked at 189 Hz 46

3.2.1. basic circuit diagram. The operational amplifiers used here are LF351 and the comparators LM339 50
3.2.2. Wave form of the output of the integrator .. 52
3.2.3. Schematic of the whole arrangement 53
3.2.4. Block diagram of intra-connection of voltmeter 54
3.2.5. Solder side the printed circuit board of the voltmeter 55
3.4.1. Welcome screen as displayed in the browser 57
3.4.2. Meter screen as displayed in the browser 57
3.4.3. Photograph of the component side of the meter circuit board. The black co-axial cables are the 16 inputs and grey ribbon is connected in series with 16 LEDs which indicate the selected channel. 57

4.2.1. Susceptometer block diagram 61
4.2.2. Field profile of the primary of the main coil system as a function of distance along the axis. Data are taken with ‘home-made’ LIA. The y-axis shows the LIA output with the input taken from the probe coil. The exciting signal is supplied to the primary of the coil system 63
4.2.3. Secondary response profile of the main coil. Data are plotted with error bars. A shorted coil is used as a small test sample and the ‘home-made’ LIA is used to measure compound secondary output as a function of position. 64
List of Figures

4.2.4. Photograph of the main coil system 64
4.2.5. Block diagram of the total coil configuration 65
4.2.6. Whole bridge circuit diagram. The op-amps used in each instru-
mentation amplifier is TL084. The op-amp used in the adder is
LF351. ... 67
4.2.7. Circuit diagram of the bridge portion 68
4.2.8. Solder-side PCB layout of the bridge circuit 69
4.2.9. Photograph of the component side of the bridge circuit. The blue-
coloured 10-turn potentiometers are coupled with stepper motors. 69
4.2.10. Stepper motor control circuit. The SL100 transistors are diode
protected inside the PHOENIX kits. 70
4.2.11. Heater current control circuit 73
4.2.12. Counter/Timer block diagram 74
4.2.13. Square-wave generator for temperature controller 77
4.2.14. Pre-amplifier circuit of the temperature controller circuit 78
4.2.15. Frontend of the temperature controller daemon program 79
4.2.16. Sample movement control circuit 82
4.2.17. Block diagram of the susceptometer with daemon controls 85
4.2.18. Test data taken with the susceptometer on a sample of SFMO. χ′
is in steps number. 87

5.3.1. The modified AC susceptometer for the measurement of magnetic
enhancement susceptibility. The details of the voltage-to-current
converter is shown in the figure 5.3.2. 91
5.3.2. Voltage-to-current converter circuit to feed currents to the pri-
mary of the toroidal transformer 92

7.1.1. XRD patterns of the pure and TiO₂ doped NiFe₂O₄ 108
7.1.2. Temperature dependence of AC susceptibility (χ′) of Nickel fer-
rites pure (red line) and doped with Ti⁴⁺ ions (green, blue and
pink lines). .. 109
7.2.1. Double perovskite crystal structure. 110
7.2.2. The ac susceptibility (χ′) versus temperature curve of BFMO.
The susceptibility is in units of steps number[ref: 4.2.6]. 111
7.2.3. The ac susceptibility curve for normal and enhanced field. Green
points represent the normal ac susceptibility data and blue points
represent the enhanced ac susceptibility data. 112
7.2.4. A ‘mock’ transition curve 114
7.2.5. GA fit corresponding to data set 1. Here x-axis represent temperature in Kelvin and y-axis represent ac susceptibility (χ') in units of steps number[ref: 4.2.6]. 117

7.2.6. GA fit corresponding to data set 4. The second peak is matched well but overall fit quality is not satisfactory. Here x-axis represents temperature in Kelvin and y-axis represent ac susceptibility (χ') in units of steps number[ref: 4.2.6]. 118
List of Tables

2.1. Standard error of estimate for different phase angles between signal input and reference input 31
2.2. Fit parameters for output versus phase for different inputs 31
7.1. Parameters obtained from GA runs. Run number is shown horizontally. The parameters are listed vertically. 116
List of Publications

III. “An MPI daemon-based temperature controller for an AC susceptometer”. (Communicated).