Glossary of Symbols

Common symbols throughout all Chapters

T Temperature
kB Boltzmann constant
H Magnetic Field
M Magnetization
Tc Curie temperature
Dx Crystallite Size diameter
A Tetrahedral site
B Octahedral site
a Lattice parameter
u Oxygen parameter

Chapter 1

B_d Magnetic induction or flux density
µ_0 Universal constant of permeability in a free space
µ Permeability
χ Magnetic susceptibility
N Number of atoms per unit volume
Z Number of electron
e Charge of electrons
r orbital radius
c Speed of light
C Curie constant
Θ Weiss constant
T_N Néel temperature
K_u Magnetocrystalline anisotropy constant for Uniaxial symmetry
K_1, K_0, K_2 Anisotropy constants
K_c Magnetocrystalline anisotropy constant for cubic symmetry
\(K_s \) Shape anisotropy constant
\(M_S \) Saturation magnetization
\(N_a, N_c \) Demagnetization factors in different axis
\(K_{\text{eff}} \) Effective anisotropy constant
\(K_{sc} \) Surface anisotropy constant
\(K_v \) Magnetocrystalline anisotropy constant

\textbf{Chapter 2}

\(Q_A \) Charges on the A site
\(Q_B \) Charges on the B site
\(Q_O \) Charges on the anions
\(E \) Energy
\(J \) Exchange integral
\(x \) Ion concentration
\(X_c \) Percolation threshold
\(H_c \) Coercivity
\(v_0 \) Frequency factor
\(V \) Particle volume
\(T_B \) Blocking temperature
\(V_B \) Blocking volume
\(L_q \) Angular quantum number
\(\delta \) Change in oxygen positional value
\(p_d, q_d \) Center to Center distances between cation anion
\(b_d, c_d, r_d, s_d \) Center to Center distances between the cations
\(d_d, e_d, f_d \)

\textbf{Chapter 3}

\(T_i \) Initial temperature
\(T_f \) final temperature
\(\lambda \) wavelength
d_{hkl} Interplanar distance
θ Angle
F_{hkl} structure factor
$f^i(Q)$ Atomic scattering factor
g^i Population factor
$t^i(Q)$ Temperature factor
hkl Miller indices
$\rho(\varepsilon)$ Spatial density
Q Momentum transfer
Z_e Atomic number
β Full width at half maxima
k Force constant
m Mass
h Plank’s constant
b Scattering length
σ Incident neutron flux
Γ Widths of the resonance
\mathcal{J} Cross section for coherent scattering
S Cross section for incoherent scattering
k', k'' Wave vectors
w Debye-Waller factor
S Spin quantum number
γ Magnetic moment of neutron
f Magnetic form factor
G Magnetic scattering amplitude
m_v Unit vector parallel to the magnetic moment
m_e Mass of the electron
λ_v Unit vector for polarization state
Chapter 4

\(R_{\text{Bragg}} \) Bragg factor
\(\chi^2 \) Goodness of fit
\(Z_m \) Number of molecules per formula unit per unit cell
\(M_w \) Molecular weight
\(N_A \) Avogadro’s number
\(R_p, R_{wp} \) Reliability factors
\(R_A, R_B \) Tetrahedral and octahedral site radius
\(k_t, k_o \) Force constants for tetrahedral and octahedral sites
\(M_{w1}, M_{w2} \) Molecular weight of cations on tetrahedral and octahedral sites
\(C_{11} \) Stiffness Constant
\(B \) Bulk modulus
\(\sigma_p \) Poisson’s ratio
\(k_{\text{avg}} \) Average force constant
\(V_1 \) Longitudinal elastic wave velocity
\(V_s \) Transverse elastic wave velocity
\(G_R \) Rigidity modulus
\(E_Y \) Young's modulus
\(V_m \) Mean elastic wave velocity
\(\theta_B \) Debye temperature
\(V_A \) Mean atomic volume
\(k \) Propagation vector
\(R_{\text{mag}} \) Magnetic agreement factor
\(r_A, r_B \) Radius per molecule of the tetrahedral and octahedral sites
\(R \) Bond lengths
\(u_{\text{theo}} \) Theoretically calculated oxygen parameter
\(M(\mu_B) \) Magnetic moment
\(M(T) \) Magnetization at a particular temperature
\(M(0) \) Magnetization at 0 K
\(\beta \) Bloch constant
\(\alpha \) Bloch exponent
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_p</td>
<td>Paramagnetic susceptibility</td>
</tr>
<tr>
<td>M_s</td>
<td>saturation magnetization</td>
</tr>
<tr>
<td>$M_s(D)$</td>
<td>Saturation magnetization of D_γ-sized particle</td>
</tr>
<tr>
<td>$M_s(0)$</td>
<td>Saturation magnetization of bulk sample at 0 K</td>
</tr>
<tr>
<td>t</td>
<td>Thickness of magnetically dead layer</td>
</tr>
<tr>
<td>M_0</td>
<td>Spontaneous magnetization</td>
</tr>
<tr>
<td>T_{irr}</td>
<td>Thermo magnetic irreversible temperature</td>
</tr>
<tr>
<td>T_B</td>
<td>Blocking temperature</td>
</tr>
<tr>
<td>T_{FBM}</td>
<td>Mean spin freezing/blocking temperature</td>
</tr>
</tbody>
</table>