CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>CONTENTS</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Problem undertaken</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>Theoretical Models</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Basic Theories</td>
<td>32</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Models for systems involving transfer of charge (energy band model)</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>i) Schön-Klasens model</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>ii) Lambe-Klick Model</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>iii) Donor-acceptor Model</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>iv) Ligand field band Model</td>
<td>48</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Models for systems involving absorption and emission processes in simple centres.</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>i) Configuration coordinate Model</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>ii) Continuous dielectric Models</td>
<td>47</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Models for systems involving energy transfer with no movement of charges.</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>i) Cascade mechanism</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>ii) Resonance transfer mechanism</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>iii) Excitation migration mechanism</td>
<td>49</td>
</tr>
</tbody>
</table>
2.2 Mechanism of photoconductivity

2.2.1 Absorption and excitation

i) Absorption due to pressure of imperfection

ii) Excitation of crystal vibrations

iii) Formation of excitons

iv) Free-Carrier absorption

v) Excitation across the gap

2.2.2 Traps and trapping

i) General

ii) Slow growth

iii) Increased decay rate

iv) Rise and decay transients

2.2.3 Recombination process

ia) Recombination through an imperfection

ib) Direct recombination

ii) Dissipation of energy

2.3 Mechanism of Electroluminescence

2.3.1 Excitation process

i) Field ionisation of valence electrons and impurities

ii) Injection mechanism

iia) Schottky barriers
iib) P-N (Homo) Junction
iic) Masero Junction
iid) MIS: structure
iii) Radiative tunnelling
iv) Impact ionisation
v) Breakdown luminescence

2.3.2 Transportation process
2.3.3 De-excitation process

CHAPTER 3 Experimental details
3.1 Preparation of materials
3.1.1 Preparation of Photoconductive
 1) Powders
 ia) Powder firing techniques
 ib) Hydrothermal synthesis
 ii) PC layers
 iii) Sintered layers
 iib) Chemically deposited layers
 ic) Evaporated layers
 iid) Some other methods
 iii) Sintered pellets
 iv) Single crystals
 v) Other structures
 vi) Present method of preparation
3.1.2 Preparation of electro-numinouscent materials
 i) Powder phosphors
 ii) Crystals
 iii) Thin films
 iv) Other structures
 v) Present method of preparation

3.2 Preparation of Cell
 3.2.1 PC Cell
 3.2.2 EL Cell
 PL Cell
 3.2.3 Preparation of conducting glass plate

3.3 Measuring arrangements
 3.3.1 PC studies
 i) Rise and decay studies
 ii) PC Spectral studies
 3.3.2 EL Studies
 i) EL Brightness studies
 ii) EL Spectral studies
 3.3.3 PL Studies
 3.3.4 Correction of EL & PL Spectra
 3.3.5 Correction of PC excitation spectra
CHAPTER 4 Photoconductivity rise and decay studies

4.1 Introduction 122

4.2 Experimental results 123

4.2.1 Dark Current 123

4.2.2 Photocurrent (rise and decay characteristics)

i) Temperature of preparation 123

ii) Atmosphere during preparation 128

iii) Ratio of base materials 128

iv) Flux concentration 128

v) Rare Earth (La or Dy) concentration 128

vi) Applied voltage 140

vii) Intensity of excitation 140

viii) Ambient temperature 140

ix) Ambient Pressure 143

x) Electrode effect 143

xi) Cell thickness 156

4.3 Discussions 144

4.3.1 Origin of photo and dark currents 144

4.3.2 Analysis of photoconductivity decay curves 144
CHAPTER 5

Photosensitivity and photoconductivity spectral studies

5.1 Introduction

5.2 Experimental results

5.2.1 Relative photosensitivity factor

5.2.2 Photoconductivity spectral studies

5.3 Discussions
CHAPTER 6 Electroluminescence

6.1 Introduction 184
6.2 Results and discussions 190

6.2.1 PL and EL brightness & spectra as a function of additives 190

6.2.2 EL brightness as a function of applied voltage 201

6.2.3 EL brightness as a function of frequency of the applied field 205

Table 6.1 Peak positions in spectra of different EL materials 210

Table 6.2 Values of constants Bo and b for different EL materials. 212

Future scope of the work 212

References 213