List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Legend</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure No. 1.1:</td>
<td>Alpha Lipoic Acid boosts the activities of other anti-oxidants</td>
<td>12</td>
</tr>
<tr>
<td>Figure No. 3.1:</td>
<td>Soxhlet Apparatus</td>
<td>79</td>
</tr>
<tr>
<td>Figure No. 4.1:</td>
<td>Delonix regia</td>
<td>95</td>
</tr>
<tr>
<td>Figure No. 4.2:</td>
<td>Calibration curve for gallic acid for determining the phenolic content.</td>
<td>100</td>
</tr>
<tr>
<td>Figure No. 4.3:</td>
<td>Calibration curve for tannic acid for determining the tannin content.</td>
<td>100</td>
</tr>
<tr>
<td>Figure No. 4.4:</td>
<td>Graphical representation of percent inhibition of methanolic extract of leaves and petals of Delonix regia and butylated hydroxy toluene (BHT) as standard by using Alkaline DMSO method.</td>
<td>115</td>
</tr>
<tr>
<td>Figure No. 4.5:</td>
<td>Graphical representation of percent inhibition of methanolic extract of leaves and petals of Delonix regia and Butylated hydroxy toluene (BHT) as standard by using nitric oxide radical scavenging activity.</td>
<td>116</td>
</tr>
<tr>
<td>Figure No. 4.6:</td>
<td>Graphical representation of percent inhibition of methanolic extract of leaves and petals of Delonix regia and Butylated hydroxy toluene (BHT) as standard by using hydrogen peroxide scavenging method.</td>
<td>116</td>
</tr>
<tr>
<td>Figure No. 4.7:</td>
<td>Graphical representation of percent inhibition of methanolic extract of leaves and petals of Delonix regia and Butylated hydroxy toluene (BHT) as standard by using DPPH radical scavenging activity.</td>
<td>117</td>
</tr>
<tr>
<td>Figure No. 4.8:</td>
<td>Graphical representation of percent inhibition of methanolic extract of leaves and petals of Delonix regia and Butylated hydroxy toluene (BHT) as standard by using DPPH radical scavenging activity.</td>
<td>117</td>
</tr>
<tr>
<td>Figure No. 4.9:</td>
<td>Thin layer chromatography plate showing resolution of methanolic crude extracts. Tannic acid (T.A.), Gallic acid</td>
<td>119</td>
</tr>
</tbody>
</table>
(G.A.), *D. regia* Flower (D.R. (L)) and *D. regia* (D.R. (P))

Figure No. 5.1: *Lallementia royleana*
124

Figure No. 5.2: Calibration curve for gallic acid for determining the phenolic content.
128

Figure No. 5.3: Calibration curve for tannic acid for determining the tannin content.
128

Figure No. 5.4: Graphical representation of percent inhibition of methanolic extract of the seeds of *Lallementia royleana* (LR) and butylated hydroxy toluene (BHT) as standard by using Alkaline DMSO method.
139

Figure No. 5.5: Graphical representation of percent inhibition of methanolic extract of the seeds of *Lallementia royleana* (LR) and Butylated hydroxy toluene (BHT) as standard by using nitric oxide radical scavenging activity.
140

Figure No. 5.6: Graphical representation of percent inhibition of methanolic extract of the seeds of *Lallementia royleana* (LR) and Butylated hydroxy toluene (BHT) as standard by using hydrogen peroxide scavenging method.
140

Figure No. 5.7: Graphical representation of percent inhibition of methanolic extract of the seeds of *Lallementia royleana* (LR) and Butylated hydroxy toluene (BHT) as standard by using DPPH radical scavenging activity.
141

Figure No. 5.8: Graphical representation of percent inhibition of methanolic extract of the seeds of *Lallementia royleana* (LR) and Butylated hydroxy toluene (BHT) as standard by using total anti-oxidant capacity.
141

Figure No. 5.9: Thin layer chromatography plate showing resolution of methanolic crude extracts. Tannic acid (T.A.), Gallic acid (G.A.), *Lallementia royleana* (L.R.)
144

Figure No. 5.10: Chromatogram of *Lallementia royleana* methanolic extract
144

Figure No. 6.1: *Phyllanthus maderaspatens*
150

Figure No. 6.2: Calibration curve for gallic acid for determining the phenolic content.
154
Figure No. 6.3: Calibration curve for tannic acid for determining the tannin content.

Figure No. 6.4: Graphical representation of percent inhibition of methanolic extract of the seeds of *Phyllanthus maderaspatensis* (PM) and butylated hydroxy toluene (BHT) as standard by using Alkaline DMSO method.

Figure No. 6.5: Graphical representation of percent inhibition of methanolic extract of the seeds of *Phyllanthus maderaspatensis* (PM) and Butylated hydroxy toluene (BHT) as standard by using nitric oxide radical scavenging activity.

Figure No. 6.6: Graphical representation of percent inhibition of methanolic extract of the seeds of *Phyllanthus maderaspatensis* (PM) and Butylated hydroxy toluene (BHT) as standard by using hydrogen peroxide scavenging method.

Figure No. 6.7: Graphical representation of percent inhibition of methanolic extract of the seeds of *Phyllanthus maderaspatensis* (PM) and Butylated hydroxy toluene (BHT) as standard by using DPPH radical scavenging activity.

Figure No. 6.8: Graphical representation of percent inhibition of methanolic extract of the seeds of *Phyllanthus maderaspatensis* (PM) and Butylated hydroxy toluene (BHT) as standard by using total anti-oxidant capacity.

Figure No. 6.9: Thin layer chromatography plate showing resolution of methanolic crude extracts. Tannic acid (T.A.), Gallic acid (G.A.), *Phyllanthus maderaspatensis* (P.M.).

Figure No. 6.10: Chromatogram of *Phyllanthus maderaspatensis* methanolic extract.

Figure No. 7.1: *Plantago ovata*

Figure No. 7.2: Calibration curve for gallic acid for determining the phenolic content.

Figure No. 7.3: Calibration curve for tannic acid for determining the tannin content.

Figure No. 7.4: Graphical representation of percent inhibition of methanolic extract of the seeds of *Plantago ovata* (PO) and butylated
hydroxy toluene (BHT) as standard by using Alkaline DMSO method.

Figure No. 7.5: Graphical representation of percent inhibition of methanolic extract of the seeds of *Plantago ovata* (PO) and Butylated hydroxy toluene (BHT) as standard by using nitric oxide radical scavenging activity.

Figure No. 7.6: Graphical representation of percent inhibition of methanolic extract of the seeds of *Plantago ovata* (PO) and Butylated hydroxy toluene (BHT) as standard by using hydrogen peroxide scavenging method.

Figure No. 7.7: Graphical representation of percent inhibition of methanolic extract of the seeds of *Plantago ovata* (PO) and Butylated hydroxy toluene (BHT) as standard by using DPPH radical scavenging activity.

Figure No. 7.8: Graphical representation of percent inhibition of methanolic extract of the seeds of *Plantago ovata* (PO) and Butylated hydroxy toluene (BHT) as standard by using total antioxidant capacity.

Figure No. 7.9: Thin layer chromatography plate showing resolution of methanolic crude extracts. Tannic acid (T.A.), Gallic acid (G.A.), *Plantago ovata* (P.O.).

Figure No. 7.10: Chromatogram of *Plantago ovata* methanolic extract

Figure No. 8.1: *Rosa indica*

Figure No. 8.2: Calibration curve for gallic acid for determining the phenolic content.

Figure No. 8.3: Calibration curve for tannic acid for determining the tannin content.

Figure No. 8.4: Graphical representation of percent inhibition of methanolic extract of petals of *Rosa indica* and Butylated hydroxy toluene (BHT) as a standard by using Alkaline DMSO method.

Figure No. 8.5: Graphical representation of percent inhibition of methanolic extract of petals of *Rosa indica* and Butylated hydroxy toluene (BHT) as standard by using nitric oxide radical scavenging activity.
Figure No. 8.6: Graphical representation of percent inhibition of methanolic extract of petals of *Rosa indica* and Butylated hydroxy toluene (BHT) as standard by using hydrogen peroxide scavenging method. 224

Figure No. 8.7: Graphical representation of percent inhibition of methanolic extract of petals of *Rosa indica* and Butylated hydroxy toluene (BHT) as standard by using DPPH radical scavenging activity. 225

Figure No. 8.8: Graphical representation of percent inhibition of methanolic extract of petals of *Rosa indica* and Butylated hydroxy toluene (BHT) as standard by using total anti-oxidant capacity. 225

Figure No. 8.9: Thin layer chromatography plate showing resolution of methanolic crude extracts. Tannic acid (T.A.), Gallic acid (G.A.), *Rosa indica* (R.I.). 228

Figure No. 8.10: Chromatogram of *Rosa indica* methanolic extract. 228

Figure No. 9.1: *Solanum nigrum* 235

Figure No. 9.2: Calibration curve for gallic acid for determining the phenolic content. 241

Figure No. 9.3: Calibration curve for tannic acid for determining the tannin content. 241

Figure No. 9.4: Graphical representation of percent inhibition of methanolic extract of berries (SNB), leaves (SNL) and flowers (SNF) of *Solanum nigrum* and butylated hydroxy toluene (BHT) as standard by using Alkaline DMSO method. 259

Figure No. 9.5: Graphical representation of percent inhibition of methanolic extract of berries (SNB), leaves (SNL) and flowers (SNF) of *Solanum nigrum* and Butylated hydroxy toluene (BHT) as standard by using nitric oxide radical scavenging activity. 259

Figure No. 9.6: Graphical representation of percent inhibition of methanolic extract of berries (SNB), leaves (SNL) and flowers (SNF) of *Solanum nigrum* and Butylated hydroxy toluene (BHT) as standard by using hydrogen peroxide scavenging method. 260

Figure No. 9.7: Graphical representation of percent inhibition of methanolic extract of berries (SNB), leaves (SNL) and flowers (SNF) of *Solanum nigrum* and Butylated hydroxy toluene (BHT) as standard by using nitric oxide radical scavenging activity. 260
extract of berries (SNB), leaves (SNL) and flowers (SNF) of *Solanum nigrum* Butylated hydroxy toluene (BHT) as standard by using DPPH radical scavenging activity.

Figure No. 9.8: Graphical representation of percent inhibition of methanolic extract of berries (SNB), leaves (SNL) and flowers (SNF) of *Solanum nigrum* Butylated hydroxy toluene (BHT) as standard by using total anti-oxidant capacity.

Figure No. 9.9: Thin layer chromatography plate showing resolution of methanolic crude extracts. Tannic acid (T.A.), Gallic acid (G.A.), *Solanum nigrum* (S.N.).

Figure No. 9.10: Chromatogram of *Solanum nigrum* methanolic extract.