List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Legend</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table No. 1.1:</td>
<td>Some Reactive Oxygen Species with their Symbol and Half Life.</td>
<td>4</td>
</tr>
<tr>
<td>Table No. 1.2:</td>
<td>Some Reactive Nitrogen Species with their Symbol and Half Life.</td>
<td>4</td>
</tr>
<tr>
<td>Table No. 1.3:</td>
<td>Anti-oxidant Enzymes and Vitamins</td>
<td>17</td>
</tr>
<tr>
<td>Table No. 1.4:</td>
<td>Mechanism of Action of Anti-oxidant Enzymes.</td>
<td>18</td>
</tr>
<tr>
<td>Table No. 2.1:</td>
<td>Major classes of anti-oxidant compounds in plants</td>
<td>39</td>
</tr>
<tr>
<td>Table No. 2.2:</td>
<td>Range of human diseases in which oxidative damage have been claimed to play a role in the pathogenesis.</td>
<td>40</td>
</tr>
<tr>
<td>Table No. 2.3:</td>
<td>Important Enzymatic and Non-enzymatic Physiological Anti-oxidants</td>
<td>46</td>
</tr>
<tr>
<td>Table No. 2.4:</td>
<td>Various types of anti-oxidants based on their functions</td>
<td>47</td>
</tr>
<tr>
<td>Table No. 2.5:</td>
<td>Polyphenolic Content in Some Natural Sources</td>
<td>58</td>
</tr>
<tr>
<td>Table No. 3.1:</td>
<td>Ethno-botanical information of some medicinal plant species selected for the study.</td>
<td>77</td>
</tr>
<tr>
<td>Table No. 4.1:</td>
<td>The percentage yield of methanolic petals and leaves extract of Delonix regia.</td>
<td>98</td>
</tr>
<tr>
<td>Table No. 4.2:</td>
<td>Phyto-chemical analysis methanolic extract of petals and leaves extract of D. regia</td>
<td>103</td>
</tr>
<tr>
<td>Table No. 4.3:</td>
<td>The percentage alkaline DMSO inhibition of D. regia petals extract.</td>
<td>108</td>
</tr>
<tr>
<td>Table No. 4.4:</td>
<td>The percentage alkaline DMSO inhibition of D. regia leaves extract.</td>
<td>108</td>
</tr>
<tr>
<td>Table No. 4.5:</td>
<td>The percentage alkaline DMSO inhibition of butylated hydroxytoluene.</td>
<td>109</td>
</tr>
</tbody>
</table>
Table No. 4.6: The percentage nitric oxide inhibition of *D. regia* petals extract.

Table No. 4.7: The percentage nitric oxide inhibition of *D. regia* leaves extract.

Table No. 4.8: The percentage nitric oxide inhibition of butylated hydroxytoluene.

Table No. 4.9: The percentage hydrogen peroxide inhibition of *D. regia* petals extract.

Table No. 4.10: The percentage hydrogen peroxide inhibition of *D. regia* leaves extract.

Table No. 4.11: The percentage hydrogen peroxide inhibition of butylated hydroxytoluene.

Table No. 4.12: The percentage DPPH inhibition of *D. regia* petals extract.

Table No. 4.13: The percentage DPPH inhibition of *D. regia* leaves extract.

Table No. 4.14: The percentage DPPH inhibition of butylated hydroxytoluene.

Table No. 4.15: The percentage inhibition values by total anti-oxidant capacity method of *D. regia* petals extract.

Table No. 4.16: The percentage inhibition value by total anti-oxidant capacity method of *D. regia* leaves extract.

Table No. 4.17: The percentage inhibition values by total anti-oxidant capacity method of butylated hydroxytoluene.

Table No. 4.18: The IC$_{50}$ value of different anti-oxidant activity of methanolic petals and leaves extract of *D. regia* and butylated hydroxytoluene (BHT).

Table No. 5.1: The percentage yield of methanolic seed extracts of *Lallemantia royleana*.

Table No 5.2: Phyto-chemical analysis of seeds extract of *L. royleana*.
Table No. 5.3: The percentage alkaline DMSO inhibition of *L. royleana* seeds extract.
Table No. 5.4: The percentage alkaline DMSO inhibition of butylated hydroxytoluene.
Table No. 5.5: The percentage nitric oxide inhibition of *L. royleana* seeds extract.
Table No. 5.6: The percentage nitric oxide inhibition of butylated hydroxytoluene.
Table No. 5.7: The percentage hydrogen peroxide inhibition of *L. royleana* seeds extract.
Table No. 5.8: The percentage hydrogen peroxide inhibition of butylated hydroxytoluene.
Table No. 5.9: The percentage DPPH inhibition of *L. royleana* seeds extract.
Table No. 5.10: The percentage DPPH inhibition of butylated hydroxytoluene.
Table No. 5.11: The percentage total anti-oxidant capacity of *L. royleana* seeds extract.
Table No. 5.12: The percentage inhibition by total anti-oxidant capacity of butylated hydroxytoluene.
Table No. 5.13: The IC$_{50}$ value of different anti-oxidant activity of methanolic seeds extract of *L. royleana*.
Table No. 5.14: The table shows peak results of *L. royleana* methanolic seed extract.
Table No. 6.1: The percentage yield of methanolic seed extracts of *Phyllanthus maderaspatensis*.
Table No. 6.2: Phyto-chemical analysis of seeds extract of *P. maderaspatensis*.
Table No. 6.3: The percentage alkaline DMSO inhibition of *P. maderaspatensis* seeds extract.
Table No. 6.4: The percentage alkaline DMSO inhibition of butylated hydroxytoluene.

Table No. 6.5: The percentage nitric oxide inhibition of *P. maderaspatensis* seeds extract.

Table No. 6.6: The percentage nitric oxide inhibition of butylated hydroxytoluene.

Table No. 6.7: The percentage hydrogen peroxide inhibition of *P. maderaspatensis* seeds extract.

Table No. 6.8: The percentage hydrogen peroxide inhibition of butylated hydroxytoluene.

Table No. 6.9: The percentage DPPH inhibition of *P. maderaspatensis* seeds extract.

Table No. 6.10: The percentage DPPH inhibition of butylated hydroxytoluene.

Table No. 6.11: The percentage inhibition by total anti-oxidant capacity of *P. maderaspatensis* seeds extract.

Table No. 6.12: The percentage inhibition by total anti-oxidant capacity of butylated hydroxytoluene.

Table No. 6.13: The IC50 value of different anti-oxidant activity of methanolic seeds extract of *P. maderaspatensis* and standard(BHT).

Table No. 6.14: The table shows the peak results of *P. maderaspatensis* methanolic seed extract

Table No. 7.1: The percentage yield of methanolic seed extracts of *Plantago ovata*

Table No. 7.2: Phyto-chemical analysis of seeds extract of *P. ovata*.

Table No. 7.3: The percentage alkaline DMSO inhibition of *P. ovata* seeds extract.

Table No. 7.4: The percentage alkaline DMSO inhibition of butylated hydroxytoluene.
<table>
<thead>
<tr>
<th>Table No. 7.5:</th>
<th>The percentage nitric oxide inhibition of P. ovata seeds extract.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table No. 7.6:</td>
<td>The percentage nitric oxide inhibition of butylated hydroxytoluene.</td>
</tr>
<tr>
<td>Table No. 7.7:</td>
<td>The percentage hydrogen peroxide inhibition of P. ovata seeds extract.</td>
</tr>
<tr>
<td>Table No. 7.8:</td>
<td>The percentage hydrogen peroxide inhibition of butylated hydroxytoluene.</td>
</tr>
<tr>
<td>Table No. 7.9:</td>
<td>The percentage DPPH inhibition of P. ovata seeds extract.</td>
</tr>
<tr>
<td>Table No. 7.10:</td>
<td>The percentage DPPH inhibition of butylated hydroxytoluene.</td>
</tr>
<tr>
<td>Table No. 7.11:</td>
<td>The percentage total anti-oxidant capacity of P. ovata seeds extract.</td>
</tr>
<tr>
<td>Table No. 7.12:</td>
<td>The percentage inhibition by total anti-oxidant capacity of butylated hydroxytoluene.</td>
</tr>
<tr>
<td>Table No. 7.13:</td>
<td>The IC₅₀ value of different anti-oxidant activity of methanolic seeds extract of P. ovata and standard (BHT).</td>
</tr>
<tr>
<td>Table No. 7.14:</td>
<td>The table shows the peak results of P. ovata methanolic seed extract.</td>
</tr>
<tr>
<td>Table No. 8.1:</td>
<td>The percentage yield of methanolic petals extracts of Rosa indica.</td>
</tr>
<tr>
<td>Table No. 8.2:</td>
<td>Phyto-chemical analysis of petals extract of R. indica.</td>
</tr>
<tr>
<td>Table No. 8.3:</td>
<td>The percentage alkaline DMSO inhibition of R. indica petals extract.</td>
</tr>
<tr>
<td>Table No. 8.4:</td>
<td>The percentage alkaline DMSO inhibition of butylated hydroxytoluene.</td>
</tr>
<tr>
<td>Table No. 8.5:</td>
<td>The percentage nitric oxide inhibition of R. indica petals extract.</td>
</tr>
</tbody>
</table>
Table No. 8.6: The percentage nitric oxide inhibition of butylated hydroxytoluene.

Table No. 8.7: The percentage hydrogen peroxide inhibition of \textit{R. indica} petals extract.

Table No. 8.8: The percentage hydrogen peroxide inhibition of butylated hydroxytoluene.

Table No. 8.9: The percentage DPPH inhibition of \textit{R. indica} petals extract.

Table No. 8.10: The percentage DPPH inhibition of butylated hydroxytoluene.

Table No. 8.11: The percentage total anti-oxidant capacity of \textit{R. indica} petals extract.

Table No. 8.12: The percentage inhibition by total anti-oxidant capacity of butylated hydroxytoluene.

Table No. 8.13: The IC\textsubscript{50} value of different anti-oxidant activity of methanolic petals extract of \textit{R. indica} and standard (BHT).

Table No. 8.14: The table shows the peak results of \textit{R. indica} methanolic petals extract.

Table No. 9.1: Percentage yield of methanolic plant extracts.

Table No. 9.2: Results of Phyto-chemical analysis of \textit{Solanum nigrum}

Table No. 9.3: The percentage alkaline DMSO inhibition of methanolic berries extract of \textit{S.nigrum}.

Table No. 9.4: The percentage alkaline DMSO inhibition of methanolic leaves extract of \textit{S.nigrum}.

Table No. 9.5: The percentage alkaline DMSO inhibition of methanolic flowers extract of \textit{S.nigrum}.

Table No. 9.6: The percentage alkaline DMSO inhibition of butylated hydroxytoluene.

Table No. 9.7: The percentage nitric oxide radical inhibition of
methanolic berries extract of *S.nigrum*.

Table No. 9.8: The percentage nitric oxide radical inhibition of methanolic leaves extract of *S.nigrum.* 251

Table No. 9.9: The percentage nitric oxide radical inhibition of methanolic flowers extract of *S.nigrum.* 252

Table No. 9.10: The percentage nitric oxide radical inhibition of butylated hydroxytoluene. 252

Table No. 9.11: The percentage hydrogen peroxide radical inhibition of methanolic berries extract of *S.nigrum.* 253

Table No. 9.12: The percentage hydrogen peroxide radical inhibition of methanolic leaves extract of *S.nigrum.* 253

Table No. 9.13: The percentage hydrogen peroxide radical inhibition of methanolic flowers extract of *S.nigrum* 254

Table No. 9.14: The percentage hydrogen peroxide radical inhibition of butylated hydroxytoluene. 254

Table No. 9.15: The percentage DPPH radical inhibition of methanolic berries extract of *S.nigrum.* 255

Table No. 9.16: The percentage DPPH radical inhibition of methanolic leaves extract of *S.nigrum.* 255

Table No. 9.17: The percentage DPPH radical inhibition of methanolic flowers extract of *S.nigrum.* 256

Table No. 9.18: The percentage DPPH radical inhibition of butylated hydroxytoluene. 256

Table No. 9.19: The percentage inhibition by total anti-oxidant capacity of methanollic berries extract of *S. nigrum.* 257

Table No. 9.20: The percentage inhibition by total anti-oxidant capacity of methanollic leaves extract of *S. nigrum.* 257

Table No. 9.21: The percentage inhibition by total anti-oxidant capacity of methanollic flowers extract of *S. nigrum.* 258

Table No. 9.22: The percentage inhibition by total anti-oxidant capacity of butylated hydroxytoluene. 258
Table No. 9.23: The IC$_{50}$ value of different anti-oxidant activity of methanolic berries, leaves and flowers extract of S. nigrum and butylated hydroxytoluene (BHT).

Table No. 9.24: The table shows peak results of S. nigrum methanolic berries extract.

Table No. 11.1: Comparative study of Percentage yield of all the plant extracts.

Table No. 11.2: Comparative study of total phenolics and total tannins content of all the plant extracts.

Table No. 11.3: Comparative study of Phyto-chemical analysis of all plant extracts.

Table no. 11.4: Comparative chart for IC$_{50}$ value for all the plants extracts.

Table No. 11.5: Comparative study of R$_f$ value of all plant extracts.