CONTENTS FOR FIGURES

rage no.	P	age	No.
----------	---	-----	-----

1.1	Crystal structures of MnO_2 minerals where $* = Mn(IV)$ and $o = O^{2^-}$ and line represents octahedral. (a) Hollandite; (b) Psilomelane; (c) Pyrolusite; (d) Nsutite and (e) Ramsdellite.	25
1.2	Thermal transformation of MnO ₂ phases.	26
3.1	Plot of NaBrO3 weight added to the 10 ml manganese effluent versus weight of MnO2 obtained	63
3.2	(A) Thermogravimetric (TGA) behavior of Pyrolusite-MnO ₂ sample used by M/s Atul Ltd containing 85% MnO ₂	64
	(B) X-ray diffraction patterns of Pyrolusite-MnO ₂ sample used by M/s Atul Ltd containing 85% MnO ₂ .	64
3.3	Thermogravimetric (TGA) of MnCO3 fused sample at 450 °C for (a) 4 h containing 58.45% MnO2, (b) 6 h containing 53.89% MnO2.	69
3.4	X-ray diffraction patterns of $MnCO_3$ fused sample at 450 °C for (a) 4 h containing 58.45% MnO_2 , (b) 6 h containing 53.89% MnO_2 , (c) 2.5 h containing 84% MnO_2 after HCl wash.	70
3.5	Thermogravimetric (TGA) curves of fused $MnCO_3$ along with (a) 1, (b) 1.93, (c) 3.87 g Na ₂ CO ₃ at 500 °C for 3 h.	73
3.6	X-ray diffraction patterns of fused MnCO ₃ sample along with (a) 1, (b) 1.93, (c) $3.87 \text{ g Na}_2\text{CO}_3$ at 500 °C for 3 h	74
3.7	Thermogravimetric (TGA) of MnCO ₃ sample fused for 2.5 h at 450 °C with (a) 15 g having 93.7% MnO ₂ ; (b) 20 g Na ₂ CO ₃ having 71.5% MnO ₂ after acid treatment.	77
3.8	X-ray diffraction patterns of $MnCO_3$ sample fused along with (a) 5, (b) 10, (c) 15, (d) 20 g Na ₂ CO ₃ at 450 °C for 2.5 h	78
3.9	X-ray diffraction patterns of $MnCO_3$ sample fused along with 2 g of (a) CaCO ₃ .	79
	X-ray diffraction patterns of MnCO ₃ sample fused along with 2 g of (b) MgCO ₃ at 450 °C for 2.5 h	80

3.10 Thermogravimetric (TGA) curves of fused MnCO₃ at 450 °C along with 83 (a) 0.1 g NaOH for 2 h having 59.75% MnO₂; (b) 0.1 g NaOH for 4 h having 61.27% MnO₂.

Thermogravimetric (TGA) curves of fused MnCO₃ at 450 °C along with 84 (c) 0.1 g NaOH for 6 h having 64.67% MnO₂; (d) 1 g NaOH for 3 h having 69.10% MnO₂.

- 3.11 X-ray diffraction patterns of fused MnCO₃ sample at 450 °C along with 85 (a) 0.1 g NaOH for 2 h having 59.75% MnO₂; (b) 1.0 g NaOH for 4 h having 61.27% MnO₂; (c) 1.0 g NaOH for 3 h having 69.10% MnO₂.
- **3.12** (A) Thermogravimetric (TGA) curves of 55.5% MnO₂ obtained by the 88 chemical oxidation of Mn(II) in ME using Cl₂ gas.

(B) X-ray diffraction patterns of 55.5% MnO_2 obtained by the chemical 88 oxidation of Mn(II) in ME using Cl_2 gas.

3.13 (A) Thermogravimetric (TGA) curve of 88% MnO₂ obtained by the 91 chemical oxidation of Mn(II) in ME using NaBrO₃ gas.

(B) X-ray diffraction pattern of 88% MnO₂ obtained by the chemical 92 oxidation of Mn(II) in ME using NaBrO₃ gas.

3.14 (A) Thermogravimetric (TGA) curve of 80% MnO₂ obtained by the 96 chemical oxidation of Mn(II) in ME using KMnO₄.

(B) X-ray diffraction pattern of 80% MnO₂ obtained by the chemical 96 oxidation of Mn(II) in ME using KMnO₄.

3.15 (A) Thermogravimetric (TGA) curve of 72% MnO₂ obtained by 98 potassium chlorate treatment on fused MnCO₃.

(B) X-ray diffraction pattern of 72% MnO₂ obtained by potassium 99 chlorate treatment on fused MnCO₃.

3.16 (A) Thermogravimetric (TGA) curve of 80% MnO₂ obtained by HNO₃ 101 treatment on fused MnCO₃.

(B) X-ray diffraction pattern of 80% MnO₂ obtained by HNO₃ treatment 101 on fused MnCO₃.

3.17 (A) Thermogravimetric (TGA) curve of 74% MnO₂ obtained by ozone 103 treatment on fused MnCO₃.

(B) X-ray diffraction pattern of 74% MnO_2 obtained by ozone treatment 104 on fused $MnCO_3$.

vii