Table of Content

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i-iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>v-vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii- xiv</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xix-xx</td>
</tr>
</tbody>
</table>

CHAPTER 1
Introduction/Review of Literature
1.1 Introduction
1.2 Glycation of biomacromolecule
1.2.1 DNA glycation
1.2.2 Protein glycation
1.2.3 Lipoproteins glycation
1.3 Advanced glycation end products: source and target
1.4 Interrelations of ROS, RCS and AGEs
1.5 Antigenicity of glycated LDL
1.6 Diabetes Mellitus
1.6.1 Type 1 & type 2 diabetes mellitus
1.7 Atherosclerosis
1.8 Immune alteration in diabetes/atherosclerosis
1.9 Objectives of present study

CHAPTER 2
Bio-physical characterization of ribose induced glycation: A mechanistic study on DNA perturbations.
2.1 Introduction
2.2 Material and Methods
2.2.1 Chemicals
2.2.2 Glycation of double stranded CT-DNA
2.2.3 Determination of DNA Amadori products 32
2.2.4 Spectral studies of native and glycated DNA 32
2.2.5 Agarose gel electrophoresis 32-33
2.2.6 Thermal denaturation studies 33
2.2.1 Nitroblue tetrazolium (NBT) reduction assay for DNA Amadori products 33-35
2.3.2 UV–vis spectroscopic characterization of CT-DNA 35-37
2.3.3 Agarose gel electrophoresis of native and glycated CT-DNA 37
2.3.4 Fluorescence studies of native and glycated DNA 37-39
2.3.5 CD spectra of native and glycated DNA 39
2.3.6 Thermal denaturation of native and glycated DNA 39-43
2.5 Conclusion 44

CHAPTER 3 Studies on glycation of human low density lipoprotein: A functional insight into physico-chemical analysis. 45-60
3.1 Introduction 45-47
3.2. Materials and methods 47-50
3.2.1 Chemicals 47
3.2.2 Glycation of LDL 47-48
3.2.3 Spectral studies of native and glycated LDL 48
3.2.4 Fluorescence studies 48
3.2.5 Circular dichroism measurements 48
3.2.6 Thermal denaturation studies 48-49
3.2.7. Determination of protein-bound carbonyl groups 49
3.2.8 NBT reduction assay 49
3.2.9 Thiobarbituric acid assay 49-50
3.3. Results and Discussions 50-59
3.3.1 Glycation and UV–vis spectroscopic characterization of LDL 50-51
3.3.2 Fluorescence studies of native and glycated LDL 52
3.3.3 CD spectra of native and glycated LDL 52-54
3.3.4 Thermal denaturation of native and glycated LDL 54
3.3.5 Determination of carbonyl content in native and glycated LDL 54
3.3.6 Nitroblue tetrazolium (NBT) reduction assay for LDL Amadori products 54-59
3.3.7 Determination of HMF content in native and glycated LDL 59
3.4. Conclusion 59-60

CHAPTER 4 An Immunohistochemical Analysis to Validate the Rationale behind the Enhanced Immunogenicity of D-Ribosylated Low Density Lipo-Protein. 61-79
4.1 Introduction 61-62
4.2 Material and Methods 62-68
4.2.1 Ethics statement 62-63
4.2.2 Chemicals 63
4.2.3 Glycation of LDL, various proteins and amino acids 63
4.2.4 Measurement of superoxide anion 63-64
4.2.5 Measurement of hydroxyl radical 64
4.2.6 Immunization Schedule 64
4.2.7 Estimation of Conjugate diene (CD) and Thiobarbituric acid reducing substance (TBARS) in plasma 64-65
4.2.8 Enzyme linked immunosorbent assay (ELISA) 66
4.2.9 Competitive ELISA/ Cross reactivity 66-67
4.2.10 Purification of Antibodies 67
4.2.11 Histopathological study of Kidney Sections Light Microscopic analysis 67-68
4.2.12 Immunofluorescence analysis 68
4.3 Results and Discussions 68-75
4.3.1 Modification of LDL by D-ribose 68
4.3.2 Estimation of superoxide anion 68
4.3.3 Estimation of hydroxyl radicals 69
4.3.4 Estimation of CD and TBARS in plasma 69
4.3.5 Immunogenicity of LDL and its D-ribose-modified form 69-75
4.4 Conclusion 75-79

CHAPTER 5 Acquired immunogenicity of CT-DNA and LDL modified by D-ribose: A comparative study. 80-96
5.1 Introduction 80-82
5.2 Material and Methods 82-84
5.2.1 Chemicals 82
5.2.2 Glycation of double stranded DNA and LDL 82
5.2.3 Induction of antibodies against glycated DNA and LDL 82-83
5.2.4 Enzyme linked immunosorbent assay (ELISA) 83
5.2.5 Competition ELISA

5.2.6 Detection of antibodies against glycated DNA and LDL in diabetes type 2 and diabetic atherosclerosis patients

5.3 Results and Discussions

5.3.1 Immunogenicity of CT-DNA, LDL and its D-ribose-modified form

5.3.2 Cross reactivity of d-ribose modified CT-DNA and LDL

5.3.3 Detection of antibodies in diabetes and diabetes atherosclerosis patients against glycated CT-DNA and LDL

4.4 Conclusions

CHAPTER 6. To examine the binding of native and glycated LDL in patient’s sera: A clinical study.

6.1 Introduction

6.2 Materials and Methods

6.2.1 Chemicals

6.2.2 Study population

6.2.3 Collection of serum Sample

6.2.4 Inclusion/exclusion criteria

6.2.4.1 Inclusion criteria

6.2.4.2 Exclusion criteria

6.2.5 Anthropometric measurements

6.2.6 Collection blood

6.2.7 Biochemical investigations

6.2.8 Preparation of glycation modified LDL

6.2.9 Enzyme linked immunosorbent assay (ELISA)
6.2.10 Purification of Antibodies 103-104
6.2.11 Determination of protein-bound carbonyl groups 104
6.2.12 NBT reduction assay 104
6.2.13 Thiobarbituric acid assay 104-105
6.2.14 Purification of Antibodies 105
6.2.15 Competitive ELISA 105-106

6.3 Results and Discussions 106-145
6.3.1 Biochemical data estimation in patients and healthy subjects 106
6.3.2 Determination of carbonyl content in patients and HC sera 106-109
6.3.3 Nitroblue tetrazolium (NBT) reduction assay for LDL Amadori products determination in patient’s and HC sera 109
6.3.4 Determination of HMF content in HC and patient’s sera 109-114
6.3.5 Binding of antibodies from patients to native and glycated LDL 114
6.3.6 Specificity of circulating antibodies in patient’s sera against native and D-ribose glycated LDL 114-146

6.4 Conclusion 146

CHAPTER 7 Summary and Conclusion 147-154
List of Publications 155-156
Bibliography 157-182