LIST OF FIGURES

Chapter-2

<table>
<thead>
<tr>
<th>Figure 2.1</th>
<th>(a) WAXRD patterns and (b) TEM images of three different types of nanocomposites.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter-3

<table>
<thead>
<tr>
<th>Figure 3.1</th>
<th>Five necked glass reactor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter-4.A

<table>
<thead>
<tr>
<th>Figure 4.1</th>
<th>Acid value of all unsaturated acid UP1, UP2, UP3 and UP4 at different time intervals.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure 4.2</th>
<th>Plots of (a) extent of reaction of different unsaturated Polyesters with time, and (b) average degree of polymerization of different unsaturated polyester with time.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure 4.3</th>
<th>Degree of polymerization of different unsaturated polyesters with time.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure 4.4</th>
<th>The comparison of acid value and extent of reaction after seventy five minutes.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter-4.B

<table>
<thead>
<tr>
<th>Figures 4.5</th>
<th>Linear correlation plots between actual and predicted response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Hydroxyl value, b) Acid value, c) Average molecular weight,</td>
</tr>
<tr>
<td></td>
<td>d) Glycolysis conversion percentage respectively</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Surface plot (3D) showing variation in hydroxyl value with</td>
</tr>
<tr>
<td></td>
<td>glycolysis time and temperature</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Surface plot (3D) showing variation in acid value with</td>
</tr>
<tr>
<td></td>
<td>glycolysis time and temperature</td>
</tr>
</tbody>
</table>
Figure 4.8 Surface plot (3D) showing variation in average molecular weight with glycolysis time and temperature.

Figure 4.9 Surface plot (3D) showing variation in Glycolysis conversion percentage with glycolysis time and temperature.

Chapter 4.4 C

Figure 4.10 Sorption curve showing mole percent uptake of unsaturated polyester samples with varied acid content at 20 °C.

Figure 4.11 Sorption curve showing mole percent uptake of unsaturated polyester samples with varied acid content at 50 °C.

Figure 4.12 Sorption curve showing mole percent uptake of unsaturated polyester nanocomposite with varied acid content (fixed clay 4 %) at 20 °C.

Figure 4.13 Sorption curve showing mole percent uptake of unsaturated polyester nanocomposite with varied acid content (fixed clay 4 %) at 50 °C.

Figure 4.14 Sorption curve showing mole percent uptake of nanocomposite samples 90UP with variation in clay percentage from 0 to 5 % at 20 °C.

Figure 4.15 Sorption curve showing mole percent uptake of nanocomposite samples 90UP with variation in clay percentage from 0 to 5 % at 50 °C.

Figure 4.16 Bar diagram for virgin and nanocomposite polyester samples showing diffusion coefficient values at different temperatures

Figure 4.17 Plot of volume equilibrium of swelling (Q) versus solubility parameter (δ) for 60UP0 and 60UP4 samples at 20 °C. The (δ) values in (cal/cm³)^{1/2} of the used solvents are 8.85 (xylene), 10.1 (acetic acid), 12.14 (dimethyl formamide), 14.28 (methanol), 23.5 (water).
Chapter-4.D

Figure 4.18 Sorption curve showing mole percent uptake of unsaturated polyester nanocomposite with varying mixing time (fixed clay 5 %) at 20 °C (synthesized by simultaneous method).

Figure 4.19 Sorption curve showing mole percent uptake of unsaturated polyester nanocomposite with varying mixing time (fixed clay 5 %) at 30 °C (synthesized by simultaneous method).

Figure 4.20 Sorption curve showing mole percent uptake of unsaturated polyester nanocomposite with varying mixing time (fixed clay 5 %) at 40 °C (synthesized by simultaneous method).

Figure 4.21 Sorption curve showing mole percent uptake of unsaturated polyester nanocomposite with varying mixing time (fixed clay 5 %) at 50 °C (synthesized by simultaneous method).

Figure 4.22 Sorption curve showing mole percent uptake of unsaturated polyester nanocomposite with varying mixing time (fixed clay 5 %) at 20 °C (synthesized by sequential method).

Figure 4.23 Sorption curve showing mole percent uptake of unsaturated polyester nanocomposite with varying mixing time (fixed clay 5 %) at 30 °C (synthesized by sequential method).

Figure 4.24 Sorption curve showing mole percent uptake of unsaturated polyester nanocomposite with varying mixing time (fixed clay 5 %) at 40 °C (synthesized by sequential method).

Figure 4.25 Sorption curve showing mole percent uptake of unsaturated polyester nanocomposite with varying mixing time (fixed clay 5 %) at 50 °C (synthesized by sequential method).
Figure 4.26 Plot of volume equilibrium of swelling (Q) versus solubility parameter (δ) for simultaneous 100UP5-15 and Sequential 100UP5-180 at 20 °C. The (δ) values in (cal/cm³)¹/₂ of the used solvents are 8.85 (xylene), 10.1 (acetic acid), 12.14 (dimethyl formamide), 14.28 (methanol) and 23.5 (water).

Chapter 4.E

Figure 4.27 FTIR Spectrum of the prepared UPR (a) Before curing and (b) After curing.

Figure 4.28 WAXRD pattern for pure clay (2a), modified clay (2b) and polymer nanocomposites (2c–f) with varying clay and unsaturated acid content.

Figure 4.29 SEM micrographs at the magnification of 3500X, Scale-10 µm for (A) neat unsaturated polyester (B) unsaturated polyester nanocomposite at 4 % clay loading (C) unsaturated polyester nanocomposite at 5 % clay loading.

Figure 4.30 TEM images of unsaturated polyester nanocomposite containing 2 wt % clay at: (A) low magnification and (B) intercalated and exfoliated sheets at high magnification of the aggregate region shown in (A) and (C) exfoliated sheets.

Figure 4.31 TEM images of unsaturated polyester nanocomposite containing 4 wt% clay at:(A) low and (B) high magnifications. Both intercalated and exfoliated regions may be investigated.

Figure 4.32 The temperature dependence of the storage modulus (a) and tan δ (b) of unsaturated polyester nanocomposites with different unsaturated acid content (60 100 %) keeping clay fixed at 4 wt %.
Figure 4.33 The temperature dependence of the storage modulus (a) and tan δ (b) of unsaturated polyester nanocomposites with different clay contents (0–6%) keeping same polymer composition.

Figure 4.34 TGA curves of the unsaturated polyester nanocomposites with different unsaturated acid content (60–100 %) keeping clay fixed at 4 wt %.

Figure 4.35 TGA curves of the unsaturated polyester nanocomposites with different clay contents (0–6 %) keeping same polymer composition.

Chapter 4.F

Figure 4.36 The sorption curve for saturated polyester with varied GPET Composition at 25 °C.

Figure 4.37(a) The sorption curve for nano-composite sample at 25 °C with variation in GPET composition at fixed 4% nano-clay.

Figure 4.37(b) The sorption curve for nano-composite sample at 25 °C with variation in nano-clay.

Figure 4.38 The sorption curve for saturated polyester (STDPET, GPET50) and nanocomposite sample (GPET50-4) at different temperatures.

Figure 4.39 The photographs of prepared nanocomposites.

Figure 4.40 The plot of log D and log P versus inverse of temperature (1/T) for saturated polyester with varied GPET composition.

Figure 4.41 The plot of log D and log P versus inverse of temperature (1/T) for saturated polyester with varied GPET content at 4 % nano-clay.

Figure 4.42 The plot of log D and log P versus inverse of temperature (1/T) for saturated polyester with varied nano-clay content at fixed composition.
Chapter-4.G

Figure 4.43 FTIR spectrum of BHET. 154
Figure 4.44 Acid values for the different saturated polyester resins at different 156
time intervals.
Figure 4.45 Hydroxyl values for the different saturated polyester resins at different 157
time intervals.
Figure 4.46 Number average molecular weight (M_n) for the different saturated 159
polyester resins at different time intervals.
Figure 4.47 Plots of extent of reaction for the different saturated polyester 160
different time intervals.
Figure 4.48 Linear fit for the plot of $1/(1-P)^2$ versus reaction time. 161
Figure 4.49 Degree of polymerization for the different saturated polyester resins 162
at different time intervals.
Figure 4.50 The comparison of acid values and extent of reaction after seven 163
hours for different saturated polyester resin.
Figure 4.51 The XRD results for the MMT clay, modified clay, virgin matrix 164
and MMT/saturated polyester nanocomposites.
Figure 4.52 TEM images of saturated polyester nanocomposite at the 166
magnification of 15,000, scale 100 nm for (A) GPET50 containing 2 wt %
clay (B) GPET50 containing 4 wt % clay and (C) GPET50 containing 5 wt %
clay.
Figure 4.53 Water vapour transmission (WVT) of the of saturated polyester 167
and their nanocomposite sheets with varied GPET and filler composition.
Figure 4.54 DSC thermograms of the saturated polyester nanocomposites with 169
varied GPET and filler composition.

Figure 4.55 (a) The temperature dependence of the storage modulus for saturated polyester nanocomposites with varied GPET and filler composition.

Figure 4.55 (b) The temperature dependence of the Loss modulus for saturated polyester nanocomposites with varied GPET and filler composition.

Figure 4.55 (c) The temperature dependence of the tan δ for saturated polyester and their nanocomposites with varied filler composition.