INTRODUCTION
Medicinal plants, since times immemorial, have been used in virtually all cultures as a source of medicine. The widespread use of herbal remedies and healthcare preparations, as those described in ancient texts such as the Vedas and the Bible, and obtained from commonly used traditional herbs and medicinal plants, has been traced to the occurrence of natural products with medicinal properties.

Medicinal plants are plants containing inherent active ingredients used to cure diseases or relieve pain (Okigbo et al. 2008). The use of traditional medicines and medicinal plants in most developing countries as therapeutic agents for the maintenance of good health has been widely observed (UNESCO 1996). The world health organization estimated that 80% of the populations of developing countries rely on traditional medicines, mostly plant drugs, for their primary health care needs (Schmincke 2003). Medicinal plants represent a consistent part of the natural biodiversity endowment of many countries in Africa (Okigbo et al. 2008). Also, modern pharmacopoeia still contains at least 25% drugs derived from plants and many others which are synthetic analogues built on prototype compounds isolated from plants. Interest in medicinal plants as a re-emerging health aid has been fuelled by the rising costs of prescription drugs in the maintenance of personal health and well being.
and the bioprospecting of new plant-derived drugs (Lucy and Edgar 1999). Furthermore, an increasing reliance on the use of medicinal plants in the industrialized societies has been traced to the extraction and development of several drugs and chemotherapeutics from these plants as well as from traditionally used herbal remedies (UNESCO 1998). The medicinal properties of plants could be based on the antioxidant, antimicrobial antipyretic effects of the phytochemicals in them (Cowman 1999; Adesokan et al. 2008).

The practice of traditional medicine is widespread in China, India, Japan, Pakistan, Sri Lanka and Thailand. In China about 40% of the total medicinal consumption is attributed to traditional tribal medicines. In Thailand, herbal medicines make use of legumes encountered in the Caesalpiniaceae, the Fabaceae, and the Mimosaceae. In the mid-90%, it is estimated that receipts of more than US 2.5 billion have resulted from the sales of herbal medicines. And, in Japan, herbal medicinal preparations are more in demand than mainstream pharmaceutical products. Developed countries, in recent times, are turning to the use of traditional medicinal systems that involve the use of herbal drugs and remedies. About 1400 herbal preparations are used widely, according to a recent survey in Member States of the European Union. Herbal preparations are popular and are of significance in primary
healthcare in Belgium, France, Germany and the Netherlands. Such popularity of healthcare plant-derived products has been traced to their increasing acceptance and use in the cosmetic industry as well as to increasing public costs in the daily maintenance of personal health and well being. Examples of such beauty-oriented therapeutically are skin tissue regenerators, anti-wrinkling agents and anti-age creams.

The ayurvedic and unani texts mention the use of a number of plant preparations for fertility regulations. The compounds that are being sought in particular are orally effective, non-steroidal, non-estrogenic, safe and effective in inhibition of spermatogenesis or interfere with sperm maturation in men.

The herbal contraceptive have no or very little side effects and easily available everywhere. Thus, it is the simplest method to control birth rate. A herbal male contraceptive having reversible effect can become only answer to the population explosion and the threats, world is facing to this high rapid increase in individuals. In India several plants have shown potentials for a successful male contraceptive agent.

To date, several hundred plants have been reported to possess significant antifertility properties. In most of these plants, studies were restricted only to the level of arrest in spermatogenesis through histological observations and fertility tests. The roots of Aristolochia
indica, Plumbago zeylanica, the leaves of Azadirachta indica, Catheranthus roseus, Vinca rosea and Ocimum sanctum, the flowers of Hibiscus rosasinensis and fruits of Malvaviscus conzatti, seeds of Carica papaya and Vitex negundo, Vinca rosea leaf and flower (VRL & VRF) (Gosh and Suryawanshi 2001), the ethanolic extract of Teucrium polium (Kheifat et al. 2002), the aqueous leaf extract of Rinbacin (Afonne et al. 2002), Mentha piperita Linn. and Mentha spicata (Akdogon et al. 2003), the aqueous leaf extract of Chenopodium ambroioides (Aole and Izegbu 2005), seeds of Abrus precatorious (Lakshmi et al. 2006), the aqueous and alcoholic stem extract of Tinospora cardifolia (Nagaraja et al. 2007), Nigella sativa (Hadjzadeh et al. 2007), Helicteres isora bark extract (Ganean et al. 2007), the aqueous extract from the shoots of Arctotis arctotoides (Jimoh et al. 2008), the aqueous extract of Acacia karroo stem bark (Adedapo et al. 2008), Annona squamosa extract (Kaleem et al. 2008), the aqueous extract of Ficus racemosa Linn. bark (Jaykaran et al. 2009) and fruits of Momordica charantia have been identified as lead plants for male fertility regulation. Unfortunately, most of these plants were not screened completely to adjudge their harmful side effects or most of these have proved unsuitable for their use as successful male contraceptive due to their toxic side effects.
Introduction

Current trial is speculated that men's participation in family planning would increase, if there are wider choices of contraception available to them. These choices should be safe, effective and economical and that it should provide long term and completely reversible contraception, preferable free of surgery with greater acceptability rate. One of the main problems encountered in development of a male contraceptives is the fact that it is necessary to achieve azoospermia or make all the sperm non functional. Since, it is believed that even a single functional spermatozoon is adequate for fertilization. Azoosperm could be easily achieved by interfering with production of testosterone which is indispensable for spermatogenesis, but the same could interfere with libido which is unacceptable (Sriraman & Rao 2001). Sinha et al. (1990) has reported *Abrus precatorius* to be a potent contraceptive and abortificant among females even if only one seed is given.

Our previous studies have shown that this plant shows its anti fertility effects on male albino rats. When administered orally in the form of crude drug as well as in the form of chloroform, alcoholic and aqueous extracts. The preliminary studies on contraceptive effects of *Abrus precatorius* on male albino rats has shown encouraging results and it is probable that a successful male oral contraceptive pill can be developed from seeds of this plants. Bansal et al. (2004) have reported
degeneration in spermatogenetic cells and an increase in testicular cholesterol, lipids and sialic acid with alcoholic extract of *Abrus precatorius* seeds suggesting its effects on steroidogenesis.

It could only be possible if the herb does not show any toxic side effects. Since hematological studies can provide a clear picture of the general health of an organism and any drug can only be successful if it does not cause any harm to the using it.

Nephrotoxicity is one of the most common kidney problems and occurs when the body is exposed to a drug or toxin that causes damage to the kidneys, when kidney damage occurs; the subjects are unable to rid off their body excess urine, and wastes. The blood electrolytes (such as potassium, and magnesium) will be become elevated.

Many traditional medicines and foods especially in the tropical regions of Africa and Asia contain renal toxic plants. One such food medicine is the **djenkol bean**, a pungent smelling edible fruit of the hardwood tree *Pithecellobium labatum* (Areekul; Kirdudom & Chaovanapricha 1976). A 70% ethanol extract of the djenkol bean containing the toxic compound djenkolic acid was fed to monkeys, rats and mice. Histological examination of their kidneys showed severe tubular necrosis with a lesser degree of glomerular cell necrosis. A traditional remedy in South Africa called "Impila", made from the roots
of the plant *Callilepis laureola* is used to treat a number of conditions and has marked hepatic and renal toxicity. The renal damage caused is characterized by acute necrosis in proximal convoluted tubule and loop of Henle which can lead to kidney failure (Stewart; Steenkamp; van der Merwe; Zuckerman & Crowther 2002).

The most dramatic and highest profile case of herbal nephrotoxicity occurred from **1990-1992** in over 100 people in Belgium who ingested a Chinese weight loss slimming remedy containing aristolochic acid principally from the plant *Aristolochia fangchi* (Vanherweghem et al. 1993). Seventy of these patients required renal transplants or dialysis and 30 subsequently developed urothelial carcinoma. In **2000**, the FDA identified two new cases of interstitial renal fibrosis from aristocholic-containing herbal products. The resulting nephropathy is referred to as "aristolochic acid nephropathy" or less accurately "Chinese herb nephropathy."

The correlation of function with morphology in assessing renal toxicity is important for several reasons. First, the assessment of renal function is important in clinical trials is important safety parameters for all new drugs. Secondly it also helps in the selection process attempting to identify less nephrotoxic analogs of useful pharmaceuticals such as aminoglycosides, cephalosporins, and cisplatinum analogs. Finally, the
toxicologic identifying may be inhibitors of the Nephrotoxicity of therapeutically useful drugs.

Nephrotoxicity can be temporary with a temporary elevation of lab values (BUN and Creatinine). If these levels are elevated, these may be due to a temporary condition such as dehydration or we may be developing renal (kidney, failure). If the cause of the increased BUN and Creatinine level is determined early, permanent kidney problems may be avoided. Nephrotoxicity may also be referred to as renal toxicity. One of the symptoms of kidney problems is the failure to filter as much urea as is necessary. As excess of nitrogen compounds in the blood may lead to Uremia. The kidneys are normally able to filter out large amounts of creatinine on a daily basis. However, when kidney problems are present, creatinine levels in blood will increase, reflecting less creatinine being filtered out through the kidneys.

Thus, the kidney is the major target organ for toxic compound. The kidney can also produce metabolites that will be toxic for the other or tissues. Haemotoxicant can be act directly on circulating blood cells or they can act indirectly by inducing an immune response against the cell type present. Therefore, any variation in the component of blood is indicative of toxicity to the body.
Introduction

The work done in this laboratory have shown that the aqueous and methanolic extract of seeds of this plant definitely possess antispermatogenic properties. Also, it does not cause damage to hepatic tissue (Sharma 2007). No systematic study has been done so far to study toxicological and histological, and biochemical effect of this plant and its fractions on kidney. Therefore, its effect on renal tissue and blood has been selected for the in present work. So that it may throw a light on the future prospects of developing a successful male contraceptive with reversible effect from the seeds of Abrus precatorius.