LIST OF FIGURES

Figure 1.1: Simplified overview of Fuel cell --5
Figure 1.1.1: Basic design of the PEM fuel cell--5
Figure 1.2: Operating principle of SOFC--11
Figure 1.2.1: Configuration for a planar design SOFC--11
Figure 1.2.2: Configuration for a tubular design SOFC--12
Figure 1.2.3: Co-flow monolithic design for a solid-oxide fuel cell---------------------------12
Figure 1.2.4: Specific conductivities for selected solid-oxide Electrolytes-------------------19
Figure 1.3: Fluorite structure of Ceria --25
Figure 1.3.1: Doped Ceria---25
Figure 1.5: (a) Relative dielectric constant Vs temperature and
(b) loss tangent vs temperature---34
Figure 1.5.1: Frequency dependence of the polarization mechanisms in dielectrics:
(a) Contribution to the charging constant (representative values of ε’)
(b) Contribution to the loss angle (ε”) (Clark et al, 2005)--------------------------------------35
Figure 1.5.2: The effect of temperature on ε”eff and Pε. Points 1 and 2 in the sample
material represents positions in or on the sample with different electric
field strengths. The electric field is greater at point 2 -----------------------------------35
Figure 1.5.3: Schematic diagram showing the heating behavior of a powder mixture
containing both low and high absorbing powders in a microwave
cavity (Roy et al, 2002)---51
Figure 1.5.4: Possible modes of product formation under anisothermal conditions
(Peelamedu et al, 2001)---51
Figure 2.1: (a) Vertical ball mill---56
(b) Hydraulic press--56
Figure 2.2: (a) Schematic display of the sintering packet in microwave
processing---59
(b) Insulating packet in microwave furnace---59
Figure 2.3: Vickers hardness testing methodology ---64
Figure 2.4 Schematic of an idealised complex impedance plot and
associated equivalent circuit ---67
Figure 2.5: Experimental set up for electrical conductivity measurement -----------------68
Figure 3.1: Schematic flow chart of mixed oxide Method--71
Figure 3.2: XRD patterns of the Microwave Processed Ce0.8Ca0.2O1.8 (CCO)
(a) Pure ceria (b) CCOMW sintered at 1100°C for 10 min (c) CCOMW sintered at 1200°C for 10 min (d) CCOMW sintered at 1300°C for 10 min (e) CCOMW sintered at 1350°C for 10 min (f) CCOMW sintered at 1400°C for 10 min (g) CCOCONE sintered at 1400°C for 8 hrs------73

Figure 3.4: Variation of densities of Ce0.8Ca0.2O1.8 microwave sintered at 1300°C with Time ---78

Figure 3.5: (a): Scanning Electron Micrographs of Ca0.8Ca0.2O1.8 microwave sintered at 1300°C for 5 min -----------------------------80
(b): Scanning Electron Micrographs of Ca0.8Ca0.2O1.8 microwave sintered at 1300°C for 10 min------------------------------------80
(c): Scanning Electron Micrographs of Ca0.8Ca0.2O1.8 microwave sintered at 1300°C for 15 min -----------------------------------81
(d): Scanning Electron Micrographs of Ca0.8Ca0.2O1.8 microwave sintered at 1300°C for 20 min -----------------------------------81
(e): Scanning Electron Micrographs of Ca0.8Ca0.2O1.8 microwave sintered at 1400°C for 10 min----------------------------------82

Figure 3.6: Scanning Electron Micrographs of Ca0.8Ca0.2O1.8 conventionally sintered at 1300°C -------------------------------------82

Figure 3.7: (a) Vickers Hardness micrograph in Ca0.8Ca0.2O3 MW sintered at 1300°C for 20 min-------------------------------84
(b) Vickers Hardness micrograph in Ca0.8Ca0.2O1.8 MW sintered at 1300°C for 25 min --84

Figure 3.8: Vickers Hardness micrograph in Ce0.8Ca0.2O1.8 conventionally sintered at 1300°C for 8 hrs --------------------------85

Figure 3.9: Variation in the bulk electrical conductivity of Ca0.8Ca0.2O1.8 MW with temperature-----------------------------------89

Figure 3.10: Variation in the bulk electrical conductivity of Ce0.8Ca0.2O1.8 (CCO) microwave sintered at 1100°C for 10 min, 1300°C for 5 min, 1300°C for 10 min, 1300°C for 15 min, 1300°C for 20 min and conventionally sintered at 1400°C for 8 hours--------------------------90

Figure 4.1: The schematic diagram of the preparation and characterization of Ce0.8Gd0.1Y0.1O1.9---96

Figure 4.2: XRD Patterns of (a) Ceria (b) CGYO Precursor powder (c) CGYO
MW sintered at 1300 °C for 20 min (d) CGYO MW sintered at 1400 °C for 20 min (e) CGYO MW sintered at 1400 °C for 25 min (f) CGYO conventionally sintered at 1400 °C for 8 hours.

Figure 4.3: Variation of density of $\text{Co}_{0.8}\text{Gd}_{0.1}\text{Y}_{0.1}\text{O}_{1.9}$ microwave sintered at 1400°C for different soaking time period

Figure 4.4: (a): Scanning electron micrographs of $\text{Co}_{0.8}\text{Gd}_{0.1}\text{Y}_{0.1}\text{O}_{1.9}$ (CGYO) microwave sintered at 1300°C for 20min (b): Scanning electron micrographs of $\text{Co}_{0.8}\text{Gd}_{0.1}\text{Y}_{0.1}\text{O}_{1.9}$ (CGYO) microwave sintered at 1400°C for 20min (c): Scanning electron micrographs of $\text{Co}_{0.8}\text{Gd}_{0.1}\text{Y}_{0.1}\text{O}_{1.9}$ (CGYO) microwave sintered at 1400°C for 25min (d): Scanning electron micrographs of $\text{Co}_{0.8}\text{Gd}_{0.1}\text{Y}_{0.1}\text{O}_{1.9}$ (CGYO) conventional sintered at 1400°C for 8 hours

Figure 4.5: Vickers indentation images of samples $\text{Co}_{0.8}\text{Gd}_{0.1}\text{Y}_{0.1}\text{O}_{1.9}$ (CGYO) (a) microwave sintered at 1400°C for 20 min (b) microwave sintered at 1400°C for 25 min

Figure 4.6: Admittance curve (650°C) of CGYO microwave sintered at 1400°C for 25 min

Figure 4.7: Variation in the electrical conductivity of CGYO MW sintered and CGYO CON sintered with temperature

Figure 4.8: Variation in the bulk electrical conductivity of $\text{Ce}_{0.8}\text{Gd}_{0.1}\text{Y}_{0.1}\text{O}_{1.9}$ (CGYO) microwave sintered at 1300°C for 20 min, 1400°C for 20 min, 1400°C for 25 min and conventionally sintered at 1400°C for 8 hours

Figure 5.1: Schematic diagram of the preparation and characterization of $\text{CoCe}_{0.8}\text{Gd}_{0.2}\text{O}_{1.9}$

Figure 5.2: XRD Pattern (a) $\text{CoCe}_{0.8}\text{Gd}_{0.2}\text{O}_{1.90}$ (CoCGO)(b) CoCGO (MW) sintered 900°C for 10 min (c) CoCGO MW sintered 1000°C for 10 min (d) CoCGO sintered 1100°C for 10 min (e) CoCGO (MW) sintered at 1200°C for 10 min (f) CoCGO MW sintered 1300°C for 10 min (g) CoCGO CON sintered at 1300°C for 8 hours

Figure 5.3: Variation of density of $\text{CoCe}_{0.8}\text{Gd}_{0.2}\text{O}_{1.9}$ for microwave sintered at different temperatures with soaking time period of 10 min

Figure 5.4: SEM Micrographs $\text{Co(Co}_{0.8}\text{Gd}_{0.2}\text{O}_{1.90}$) microwave sintered at 1200°C
Figure 5.5: SEM Micrographs Co(C$_{0.80}$G$_{0.20}$O$_{1.90}$) microwave sintered at 1300°C for 10 min

Figure 5.6: SEM Micrographs Co(C$_{0.80}$G$_{0.20}$O$_{1.90}$) conventionally sintered at 1300°C for 8 Hours

Figure 5.7: Vickers indentation images of samples in Co(C$_{0.80}$G$_{0.20}$O$_{1.90}$) MW sintered at 1300°C for 10 min (b) Co(C$_{0.80}$G$_{0.20}$O$_{1.90}$) Conventionally fired at 1300°C for 8 hrs

Figure 5.8: (a) Admittance curve of CoCGO at 650°C microwave sintered at 1300°C (b) CoCGO at 700°C microwave sintered at 1300°C

Figure 5.9: Variation in the bulk electrical conductivity of CGOMW and CGOCON with temperature

Figure 5.10: Variation in the bulk electrical conductivity of CoCe$_{0.8}$Gd$_{0.2}$O$_{1.9}$ microwave sintered at 900°C for 10 min, 1000°C for 10 min, 1100°C for 10 min, 1200°C for 10 min and 1300°C for 10 min and CoCe$_{0.8}$Gd$_{0.2}$O$_{1.9}$ conventionally sintered at 1300°C for 8 hours