CONTENTS

ABSTRACT i
LIST OF FIGURES xi
LIST OF TABLES xvi
LIST OF SYMBOLS, NOTATIONS & ABBREVIATIONS xix

CHAPTER 1
INTRODUCTION 1

1.1 Introduction to Ruggedised Electronics 1
1.2 Ruggedisation Aspects 2
1.3 Background and Motivation 3
1.4 Aims and Objectives 4
 1.4.1 Global Objectives 4
 1.4.2 Detailed Objectives 5
1.5 Scope of Work 6
 1.5.1 Methodologies and Techniques proposed 6
 1.5.2 Proposed List of ESS/ Burn-In, Environmental, Dynamic and
 EMI/EMC Tests 6
1.6 Organization of Thesis 7

CHAPTER 2
REVIEW OF LITERATURE 10

2.1 Introduction 10
2.2 Survey of literature for methodologies, testing and compatibility requirements
 with Environmental standards, ESS, Burn-In procedures 10
2.3 Survey of literature for methodologies, testing and compatibility requirements
 with EMI/EMC standards 13
2.4 Review of literature for survey of application notes, datasheets and specifications of various entities, devices used. 17
2.5 Concluding Remarks 20

CHAPTER 3
PRACTICAL MODELS; STRATEGIC COMMUNICATION SYSTEM: GPS BASED VEHICLE TRACKING SYSTEM (SMS BASED AND GPRS BASED) 22

3.1 Introduction 22
3.2 Model I: GPS VTS Transmitter (TX) and Receiver (RX) boards (SMS based) 23
3.3 Model II: GPS VTS board (GPRS based) 29
3.4 Functional Modifications suggested in present GPS VTS with DGPS and Mobile Wi-Max 37
3.5 Model III: GPS VTS (Mobile SMS based) 40
3.6 Applications of GPS VTS (GPRS and SMS based) 44
3.7 Discussions and Conclusion 46

CHAPTER 4
RUGGEDISATION METHODOLOGIES PROPOSED FOR GPS VTS MODELS 47

4.1 EMI/ EMC Theory 47
 4.1.1 Electromagnetic Fields 48
 4.1.2 Field Strength 50
 4.1.3 Field strength from a small loop or monopole 50
 4.1.4 Field Strength from a resonant cable 51
 4.1.5 Types of Fields 51
 4.1.6 Electric versus magnetic field strength 53
 4.1.7 Shielding Parameters 53
4.2 Simulation of Shielding Parameters using Matlab 56
4.3 Results and Discussion 57
4.4 Sources of EMI and its hazardous effects on human beings 60
4.5 Ruggedisation Methodologies recommended / proposed for compatibility with EMI/EMC Standards 62
4.5.1 Circuit/System Design principles 62
4.5.2 Use of RFI filters 63
4.5.3 General considerations for selection and routing of cables 63
4.5.4 EMI/EMC considerations for PCB design 63
4.5.5 Grounding aspects 68
4.5.6 Shielding by using EMI Enclosures 68
4.5.7 Use of EMI Conductive Gaskets in enclosures 70
4.5.8 Honeycomb Mesh 73

4.6 Design and Implementations of Ruggedised EMI Enclosures for GPS based Vehicle Tracking System 74
4.6.1 HE-30 Ruggedised EMI Enclosure 74
4.6.2 HE-9 Aluminium EMI Enclosure 77

4.7 Ruggedisation Methodologies Proposed from the point of view of compatibility with Environmental / Dynamic standards. 79
4.7.1 Selection of Components 79
4.7.2 Balanced Mechanical Layout 79
4.7.3 Use of Shock Mounts/Vibramounts 79
4.7.4 Discussion on Heating Mats 80
4.7.5 Validation of HE-30 Enclosure with Finite Element Analysis using ANSYS for its Dynamic Assessment 81
4.7.6 Conformal Coatings 86

4.8 Discussion and Conclusion 91
4.8.1 Ruggedisation Methodologies proposed and implemented on GPS VTS Models. 92

CHAPTER 5
RELIBILTY IMPROVEMENT USING ESS AND BURN-IN ON GPS VTS PCBS 95

5.1 Introduction 95
5.2 ESS and Inherent Reliability 97
5.3 MTBF models and Reliability predictions for GPS VTS Models 97
5.4 Burn-in

5.5 Simulation with Mathematical Models for screening parameters
 5.5.1 The Arrhenius Reaction Rate Model
 5.5.2 The RADC (Rome Air Defense Command) Models
 (a) RADC Constant Temperature Model
 (b) RADC Thermal Cycling Model
 5.5.3 The Hughes Model for Constant Temperature

5.6 Parameters proposed for ESS on GPS VTS boards

5.7 ESS and Burn-In on GPS VTS boards
 5.7.1 ESS / Thermal Cycling
 5.7.2 Burn-In

5.8 Discussion and Conclusion

CHAPTER 6
VALIDATION, TESTING AND COMPATIBILITY OF GPS VTS MODELS FOR ENVIRONMENTAL AND DYNAMIC STANDARDS
(Specifications, Probable damages/ failures & Ruggedisation Methodologies proposed)

6.1 Validation of Methodologies for Ruggedisation, probable damages/failsures and summary of tests conducted

6.2 Low Temperature Test (Storage and Operating)

6.3 High Temperature Test (Storage and Operating)

6.4 Damp Heat Test (Operating)

6.5 Tropical Exposure Test (Operating)

6.6 High Altitude Test (Operating)

6.7 Dust Test

6.8 Mould growth Test

6.9 Corrosion (Salt spray) Test

6.10 Vibration Test

6.11 Drop Test

6.12 Toppling Test

6.13 Bump Test
CHAPTER 7

VALIDATION, TESTING AND COMPATIBILITY OF GPS VTS MODELS WITH EMI/EMC STANDARDS

7.1 EMI/EMC Tests
7.1.1 Performance Evaluation and Summary of EMI/EMC Tests conducted

7.2 Testing and Validation of GPS VTS Models for Radiated Emission
7.2.1 Radiated Emission limits as per CISPR and MIL-STD-461 E

EMI/EMC standards
7.2.2 Test set up for Radiated Emission Measurement
7.2.3 Observations for investigation of Radiated Emission from GPS VTS boards with HE-30 Enclosure
7.2.4 Results and Discussions
7.2.5 Radiated Emission Test on GPS VTS boards at ARAI, Pune, a national EMI Laboratory
7.2.6 Results and Discussion for RE Test on GPS VTS board (GPRS based) with HE-30 Enclosure
7.2.7 Results and Discussion for RE Test on GPS VTS Transmitter board (SMS based) with HE-30 Enclosure
7.2.8 Observations for investigation Radiated Emission from GPS VTS boards (GPRS Based and SMS based) with HE-9 EMI Enclosure
7.2.9 Result and Discussion

7.3 Testing and Validation of GPS VTS Models for Conducted Emission
7.3.1 Objective
7.3.2 Conducted Emission
7.3.3 Experimental set up
7.3.4 Observations for Conducted Emission (with and without RFI Filter) for GPS VTS boards (GPRS and SMS Based) with HE-30 EMI Enclosure 179
7.3.5 Results and Discussion 183
7.3.6 Conducted Emission test on GPS VTS boards at ARAI 183
7.3.7 Results and Discussion 185
7.4 Assessment of Radiated Susceptibility for GPS VTS Models 186
7.4.1 Test Conducted at ARAI 186
7.4.2 Field Trials conducted at VHF TV Tower 188
7.4.3 Results and Discussion 188
7.5 Assessment of Conducted Susceptibility for GPS VTS boards (Spikes and RF) 190
7.5.1 Conducted Susceptibility (Transients) Test, Results and Discussion 190
7.5.2 Conducted Susceptibility (RF) Test, Results and Discussion. 192
7.6 Orientation and Scanning of GPS VTS PCBs 192
7.6.1 Results and Discussion 193
7.7 Discussion and Conclusion 199

CHAPTER 8
CONTRIBUTIONS AND FUTURE SCOPE 203

AUTHOR’S PUBLICATIONS xxii

REFERENCES xxv

APPENDIX I
MS and Cu Combination shielding material for enclosures xxxi

APPENDIX II
GPS VTS Model I: Proposed Modified 4 layered PCB xxxiv