LIST OF FIGURES

1.1 Shows schematic of the different phases of KNO$_3$
1.2 Crystal structure changes when KNO$_3$ was passed through the heating and cooling cycles
1.3 Phase diagram of KNO$_3$ as a function of pressure and temperature measured by Bridgman
1.4 Rhombohedral unit cell in the phase - III of KNO$_3$
1.5 Diffraction pattern from a powder specimen of KNO$_3$ at room temperature
1.6 Shape variation of the (003) reflection for III-KNO$_3$
1.7 Variation of linear thermal expansion coefficient with temperature of 40-µm thick KNO$_3$ film
1.8 Temperature dependence of the dielectric constant measured at 100 kHz in KNO$_3$
1.9 D.C. conductivity versus 1000/T plot of KNO$_3$ crystal
1.10 A hysteresis loop illustrating the coercive field, E_c, the spontaneous polarization, P_s and the remanent polarization, P_r
1.11 Typical switching transient currents in ferroelectrics
1.12 Shape of reversed domains and dimensionality
1.13 Typical C-V characteristics of metal-ferroelectric-metal capacitor
2.1 X-ray spectrometer
2.2 Schematic diagram of DSC setup
2.3 The emission of secondary electrons form the specimen
2.4 The block diagram of Field Effect Scanning Electron Microscopy (FE-SEM)
2.5 Flow chart for the fabricate the composite films
2.6 The schematic diagram of spray deposition setup
2.7 The layout of vacuum coating unit
2.8 Measurement cell with sample holder for composite films
2.9 Block diagram of modified Sawyer-Tower circuit
2.10 Typical ferroelectric hysteresis loop of the composite films

xxv
2.11 Typical butter-fly loop for J-V characteristics of the samples 47
2.12 The schematic circuit diagram for measuring the switching characteristics 49
3.1 X-ray scan of pure KNO₃ in powder form 55
3.2 X-ray scan of pure NH₄NO₃ in powder form 57
3.3 XRD pattern of the pure (NH₄)₀.₃⁹K₀.₆₁NO₃ (NKN) powder 58
3.4 X-rays scan of pure PVA film 59
3.5 X-ray scan of composite films of KNO₃: PVA containing (a) 20, (b) 40, (c) 50 and (d) 70 wt.% of KNO₃ 61
3.6 Expanded (29.2-30.0°) X-ray scan of (a) Pure PVA and composite films of varying wt.% of KNO₃ (b) 20, (c) 40, (d) 50, (e) 70 and (f) 100 wt.% of KNO₃ 62
3.7 Variation of peak intensity ratio I_{III}/I_{II} as a function of different weight percentage of KNO₃ in the composite films of KNO₃: PVA 63
3.8 Variation of crystalline size as a function of weight percentage of KNO₃ in the composite films of KNO₃: PVA 63
3.9 X-ray scans of the of the composite films of KNO₃: PVA (containing 50 wt.% of KNO₃) prepared at temperature (a) 150 (b) 200 and (c) 250° C 65
3.10 Expanded x-ray scans of the (a) pure KNO₃ powder and KNO₃: PVA composite films (containing equal proportions of KNO₃ and PVA) prepared at temperatures (b) 150 (c) 200 and (d) 250° C 66
3.11 X-ray scan of composite films of NKN: PVA containing (a) 20, (b) 50, and (d) 70 wt.% of NKN 69
3.12 Variation of peak intensity ratio I_{III}/I_{II} as a function of different weight percentage of NKN in the composite films of NKN: PVA 70
3.13 Variation of crystalline size as a function of weight percentage of KNO₃ in the composite films of KNO₃: PVA 70
3.14 X-ray scans of the NKN: PVA composite films (containing 50 wt.% of NKN) deposited at temperature (a) 130, (b) 150, (c) 170, (d) 200, and (e) 250° C 72
3.15 Expanded x-ray scans of the (a) pure NKN powder and NKN: PVA composite films (containing equal proportions of NKN and PVA) 73
3.16 Variation of peak intensity ratio and crystallite size of NKN as a function of deposition temperature

3.17 (a) Two and (b) three dimensional AFM images of spray deposited KNO₃

3.18 (a) Two and (b) three dimensional AFM images of spray deposited 50wt.% KNO₃: PVA composite film fabricated at 150°C

3.19 (a) Two and (b) three dimensional AFM images of spray deposited 50wt.% KNO₃: PVA composite film fabricated at 200°C

3.20 (a) Two- and (b) three dimensional AFM images of spray deposited 50wt.% KNO₃: PVA composite film fabricated at 250°C

3.21 The field emission scanning electron microscopy (FE-SEM) images of spray deposited (a) KNO₃ film, the composite films of KNO₃: PVA containing (b) 20, (c) 50, (d) 70, (e) 90 wt.% of KNO₃ and (f) PVA film

3.22 Variation of grain size as a function of composition in KNO₃: PVA composite films

3.23 (a) Two and (b) three dimensional AFM images of spray deposited pure (NH₄)₀.₃⁹K₀.₆₁NO₃ film

3.24 (a) Two and (b) three dimensional AFM images of spray deposited 50wt.% (NH₄)₀.₃⁹K₀.₆₁NO₃: PVA composite film fabricated at 130°C

3.25 (a) Two and (b) three dimensional AFM images of spray deposited 50wt.% (NH₄)₀.₃⁹K₀.₆₁NO₃: PVA composite film fabricated at 150°C

3.26 (a) Two and (b) three dimensional AFM images of spray deposited 50wt.% (NH₄)₀.₃⁹K₀.₆₁NO₃: PVA composite film fabricated at 170°C

3.27 (a) two- and (b) three dimensional AFM images of spray deposited 50wt.% (NH₄)₀.₃⁹K₀.₆₁NO₃: PVA composite film fabricated at 200°C

3.28 (a) two- and (b) three dimensional AFM images of spray deposited 50wt.% (NH₄)₀.₃⁹K₀.₆₁NO₃: PVA composite film fabricated at 250°C

3.29 Variation of grain size and roughness of (a) 50wt.% KNO₃: PVA (blue colour) and (b) 50wt.% NKN: PVA (red colour) composite films as a function of deposition temperature
3.30 FE-SEM images of spray deposited (a) NKN film, the composite films of NKN: PVA containing (b) 30, (c) 50, (d) 70, (e) 90 wt.% of NKN and (f) PVA Film

3.31 Variation of grain size as a function of composition in NKN: PVA composite

4.1 P-E loops of the KNO₃: PVA composite films with composition (a) 20, (b) 40, (c) 50 and (d) 70 wt. % of KNO₃ respectively

4.2 The variation of (a) Pᵓ (black colour) and (b) Eₑ (red colour) as function of varying composition of KNO₃ in the composite films

4.3 P-E loop of 50 wt. % KNO₃: PVA composite films prepared at temperatures (a) 150, (b) 200 and (c) 250°C respectively

4.4 P-E loops of the (NH₄)₀.₃₉K₀.₆₁NO₃: PVA composite films with composition (a) 20, (b) 30, (c) 40, (d) 50, (e) 60, (f) 70 (g) 80 (h) 100 wt.% of (NH₄)₀.₃₉K₀.₆₁NO₃

4.5 Dependence of (a) Pᵓ (red colour) and (b) Eₑ (black colour) with varying wt.% of NKN in the NKN: PVA composite films

4.6 P-E loops of the composite films (50 wt.% NKN) deposited at (a) 130, (b) 150, (c) 170, (d) 200 and (e) 250°C respectively

4.7 The variation of 2Pᵓ and 2Pₛ as function of temperature in the 50 wt.% NKN: PVA composite films

4.8 The J-E characteristics of the composite films containing varying composition of KNO₃ in the composite films

4.9 Variation of peak current density (Jₘₐₓ) as a function of varying wt.% of KNO₃ in the composite films

4.10 The J-E loops of the composite films of NKN: PVA containing varying composition of NKN deposited at optimized temperature

4.11 Variation Jₘₐₓ on varying wt.% of NKN in the NKN:PVA composite films

4.12 The variation of percentage of back switching as a function of varying composition in KNO₃: PVA composite films

4.13 The variation of percentage of back switching as a function of varying composition in the NKN: PVA samples
4.14 The ε_d-E curves of the KNO$_3$: PVA composite films with varying composition of KNO$_3$ 111
4.15 The ε_d-E curves of the KNO$_3$: PVA (1:1) composite films at different temperature 111
4.16 The ε_d-E curves of the composite films of NKN: PVA with varying composition of NKN 112
4.17 The ε_d-E curves of the 50wt.% NKN: PVA deposited at different temperature 113
4.18 Hysteresis loops of the optimized KNO$_3$: PVA composite film at frequency (a) 10 Hz (b) 50 Hz (c) 100 Hz (d) 300 Hz and (e) 1000 Hz 114
4.19 Frequency dependences of P_r in the optimized KNO$_3$: PVA composite film 115
4.20 Frequency dependences of P_r in the optimized NKN: PVA composite film 116
4.21 Dependence of the normalized polarization versus number of reversal cycle 117
4.22 Dependence of the normalized polarization of (a) Pure NKN sample (red clour) and (b) 50 wt. % NKN: PVA composite film (black colour) versus number of reversal cycles 118
5.1 The theoretical fit (solid line) of the NLS model to the experimental switching transients (discrete points) of the composite film (containing equal proportions of KNO$_3$ and PVA) deposited at different temperatures (a) 100, (b) 150, (c) 200 and (d) 250$^\circ$C 128
5.2 Variation of P_r as a function of deposition temperature 129
5.3 Variation of peak polarization current (i_{max}) and (t_{max}) as a function of deposition temperature, T 130
5.4 The Lorentzian distribution function vs logarithmic characteristic switching time, t_o of the switching current transients curves of 50 wt.% KNO$_3$:PVA composite films prepared at (a) 100, (b) 150, (c) 200 and (d) 250$^\circ$C 130
5.5 Variation of w and t_i as a function of deposition temperature 131
5.6 The experimental bell shaped switching current transients curves of (NH$_4$)$_{0.39}$K$_{0.61}$NO$_3$ sample at (a) 10, (b) 11, (c) 12, (d) 13, (e) 14 and (f) 15 V bipolar pulses 133
5.7 The semilog of i_{max} versus reciprocal of electric field 134
5.8 Lorentzian distribution function vs logarithmic characteristic switching time, t_0 of the switching current transients curves of (NH$_4$)$_{0.39}$K$_{0.61}$NO$_3$ sample at (a) 10, (b) 11, (c) 12, (d) 13, (e) 14 and (f) 15 V bipolar pulses

5.9 Plots of log t_1 versus reciprocal of field (1/E) for the spray deposited NKN film

5.10 Plot of w versus α_{dia}/E^2 in NKN film

6.1 C-V characteristics of the composite films of (a) 20, (b) 40, (c) 50 and (d) 70 wt.% of KNO$_3$

6.2 Variation of C_{max} as a function of varying composition in the KNO$_3$: PVA films

6.3 C-V characteristics of KNO$_3$: PVA composite films prepared (a) 150, (b) 200, and (c) 250°C respectively

6.3 (inset) Variation of C_{max} as a function of substrate temperature

6.4 C-V characteristics of (a) 20, (b) 40, (c) 50 (d) 70 and (e) 100 wt.% of NKN in the composite films

6.5 Variation of C_{max} and peak intensity ratio of 180° to 90° domain as a function of varying composition of NKN in the KNO$_3$: PVA composite

6.6 C-V characteristics of (NH$_4$)$_{0.39}$K$_{0.61}$NO$_3$: PVA composite films prepared (a) 130, (b) 170, and (c) 250°C

6.7 Variation of maximum capacitance and peak intensity ratio of 180° to the 90° domain orientation

6.8 G-V characteristics of the composite films of KNO$_3$: PVA containing (a) 20, (b) 40, (c) 50 and (d) 70 wt.% of KNO$_3$

6.9 Variation of G_{max} as a function of composition of KNO$_3$ in the composite films of KNO$_3$: PVA

6.10 Current density (J-V) as a function of bias voltage of spray deposited KNO$_3$: PVA composite films containing (a) 30, (b) 50 and (c) 70 wt.% of KNO$_3$

6.11 G-V characteristics of the composite films of NKN: PVA containing (a) 20, (b) 40, (c) 50 (d) 70 and (e) 100 wt.% of NKN

xxx
6.12 Variation of G_{max} as a function of varying composition of NKN in the composite films of NKN: PVA

6.13 Current density (J-V) as a function of bias voltage of spray deposited NKN: PVA composite films containing (a) 20, (b) 40, (c) 50 (d) 70 and (e) 100 wt.% of NKN