Fig. 4.1 Experimental setup for Hysteresis loop technique
Fig. 4.2 Variation of Magnetic field (B) with applied field (H)
Fig. 4.3 Schematic of pulse field hysteresis loop tracer system
Fig. 4.4 Experimental setup for thermal variation of a.c. susceptibility.
Fig. 4.5 Schematic block diagram of a.c. susceptibility system
Fig. 4.6 Platinum Furnace assembly
Fig. 4.7 (a) Hysteresis loops for 0.0-0.2 of series Cu$_{1-x}$Zn$_x$Fe$_2$O$_4$
Fig. 4.7 (b) Hysteresis loops for 0.4-0.6 of series Cu$_{1-x}$Zn$_x$Fe$_2$O$_4$
Fig. 4.8 Magneton number versus composition of series $\text{Cu}_{1-x}\text{Zn}_x\text{Fe}_2\text{O}_4$
Fig. 4.9 Y-K angle versus composition of series Cu$_{1-x}$Zn$_x$Fe$_2$O$_4$
Fig. 4.10 (a) Variation of a.c. susceptibility χ_T/χ_{RT} with temperature for the samples $x = 0.0 - 0.2$ of series $\text{Cu}_{1-x}\text{Zn}_x\text{Fe}_2\text{O}_4$.
Fig. 4.10 (b) Variation of a.c. susceptibility χ_T/χ_{RT} with temperature for the samples $x = 0.4 - 0.6$ of series Cu$_{1-x}$Zn$_x$Fe$_2$O$_4$.
Fig. 4.10 (c) A.c. susceptibility plots of $x = 0.0 - 0.4$ of series CuCr$_x$Fe$_{2-x}$O$_4$
Fig. 4.10 (d) A.c. susceptibility plots of $x = 0.6 - 1.0$ of series $\text{CuCr}_x\text{Fe}_{2-x}\text{O}_4$.
Fig. 4.11 (a) Hysteresis loops for 0.0-0.2 of series CuCr$_x$Fe$_{2-x}$O$_4$
Fig. 4.11 (b) Hysteresis loops for 0.4-0.6 of series CuCr$_x$Fe$_{2-x}$O$_4$
Fig. 4.11 (c) Hysteresis loops for 0.8-1.0 of series CuCr$_x$Fe$_{2-x}$O$_4$
Fig. 4.12 Variation of magneton number of series CuCr$_x$Fe$_{2-x}$O$_4$
Fig. 4.13 Curie temperature versus composition of series $\text{CuCr}_x\text{Fe}_{2-x}\text{O}_4$