TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>i-iii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS AND SYMBOLS</td>
<td>iv-v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi-vii</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix-xiv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xv-xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION 1-18

1.1. Plant fibers 1
1.2. Structure of lignocellulosic biomass 3
1.3. Green modifying agents for surface modification of natural fibers
 1.3.1. Plasma 6
 1.3.2. Bacterial cellulose 8
 1.3.3. Bacterial cellulase 9
 1.3.4. Fungi 10
 1.3.5. Enzymes 10
 1.3.5.1. Laccase enzyme 11
1.4. Surface modification of plant fibers 15
 1.4.1. Conventional methods 16
 1.4.2. Environment friendly methods 17
1.5. Problem statement 18
1.6. Objectives 18

2. LITERATURE REVIEW 19-50

2.1. Plasma treatment of plant fibers 19
2.2. Pretreatment with bacterial nanocellulose 20
2.3. Pretreatment with bacterial cellulase 23
2.4. Fungal treatment of natural fibers 26
2.5. Enzymatic pretreatment of natural fibers 27
2.5.1. Laccase-assisted biografting
2.5.1.1. Biografting of phenolics
2.5.1.2. Biografting of other functional molecules
2.5.2. Chemo-enzymatic biografting

2.6. Effect of environmentally friendly methods on properties of plant fibers

2.7. Applications of modified natural fibers
2.7.1. Reinforcement in composite materials
2.7.2. Textile industry
2.7.3. Antimicrobial activities

2.8. Comparison of advantages and disadvantages of chemical and green methods

3. RESEARCH METHODOLOGY
3.1. Introduction
3.2. Materials and methods
3.2.1. Material used
3.2.1.1. Chemicals used
3.2.1.2. Natural fibers
3.2.1.3. Bacterial and fungal strains
3.2.1.4. Laccase
3.2.2. Equipments used
3.2.2.1. Autoclave
3.2.2.2. Laminar air flow
3.2.2.3. Incubator shaker
3.2.2.4. Hot air oven
3.2.2.5. pH meter
3.2.3. Technical program/details
3.2.3.1. Preparation of growth media for bacteria and fungi
3.2.3.2. Sub culturing of bacteria and fungi
3.2.3.3. Surface modification of ramie fibers using bacterial and fungal strains
3.2.3.4. Laccase catalyzed biografting of phenols onto coconut fibers

3.3. Characterization techniques
3.3.1. Fourier transform infra-red spectroscopy (FTIR)
3.3.2. X-ray diffraction (XRD)
3.3.3. Scanning electron microscopy (SEM)

3.4. Properties of modified fibers
3.4.1. Thermogravimetric analysis (TGA)
3.4.2. Moisture absorption

3.5. Applications of modified fibers
3.5.1. Antibacterial behavior of biografted coconut fibers
3.5.2. Synthesis of biocomposites reinforced with raw and modified fibers
3.5.2.1. Mechanical studies of synthesized biocomposites
3.5.2.2. Surface morphology of fractured surface of biocomposites

4. MODIFICATION OF RAMIE FIBERS BY BIOLOGICAL METHODS

4.1. Introduction
4.2. Experimental work
4.2.1. Modification of ramie fibers by bacterial and fungal cellulase
4.2.2. Mechanism
4.2.3. Effect of different reaction parameters on cellulase activity
4.2.3.1. Effect of different reaction parameters on bacterial cellulose (Brevibacillus parabrevis and Streptomyces albaduncus) activity
4.2.3.1.1. Carbon sources
4.2.3.1.2. Nitrogen sources
4.2.3.1.3. Effect of pH
4.2.3.1.4. Effect of temperature
4.2.3.1.5. Effect of incubation period
4.2.3.2. Effect of different reaction parameters on fungal cellulase

(Phanerochaete chrysosporium and Trichoderma reesei) activity

4.2.3.2.1. Carbon sources
4.2.3.2.2. Nitrogen sources
4.2.3.2.3. Effect of pH
4.2.3.2.4. Effect of temperature
4.2.3.2.5. Effect of incubation period

4.3. Characterizations
4.3.1. Characterization of ramie fibers modified by bacterial cellulase

4.3.1.1. Morphological analysis
4.3.1.2. Crystallinity of ramie fibers

4.3.2. Characterization of ramie fibers modified by fungal cellulase

4.3.2.1. Morphological analysis
4.3.2.2. Crystallinity of ramie fibers

4.4. Properties of raw and modified ramie fibers
4.4.1. Properties of raw and bacterial cellulase treated ramie fibers

4.4.1.1. Thermogravimetric analysis
4.4.1.2. Moisture absorption

4.4.2. Properties of raw and fungal cellulase treated ramie fibers

4.4.2.1. Thermogravimetric analysis
4.4.2.2. Moisture absorption

5. LACCASE CATALYZED BIOGRAFTING OF COCONUT FIBERS
5.1. Introduction
5.2. Experimental work

5.2.1. Laccase catalyzed biografting of natural phenols on coconut fiber

5.2.2. Mechanism of laccase catalyzed biografting

5.2.3. Optimization of reaction parameters for biografting

5.2.3.1. Optimization of phenol concentration

5.2.3.2. Optimization of laccase concentration

5.2.3.3. Optimization of incubation period

5.2.4. Characterization of biografted fibers

5.2.4.1. FTIR analysis

5.2.4.1.1. FTIR analysis of PCA biografted coconut fibers

5.2.4.1.2. FTIR analysis of FA biografted coconut fibers

5.2.4.1.3. FTIR analysis of EG biografted coconut fibers

5.2.4.1.4. FTIR analysis of SA biografted coconut fibers

5.2.4.2. Crystallinity of coconut fibers

5.2.4.3. Morphological analysis

5.2.5. Properties of biografted coconut fibers

5.2.5.1. Thermogravimetric analysis

5.2.5.1.1. TGA of PCA biografted coconut fibers

5.2.5.1.2. TGA of FA biografted coconut fibers

5.2.5.1.3. TGA of EG biografted coconut fibers

5.2.5.1.4. TGA of SA biografted coconut fibers

5.2.5.2. Moisture absorption

6. APPLICATIONS OF MODIFIED FIBERS

6.1. Introduction

6.2. Applications of modified fibers
6.2.1. Antibacterial behavior of biografted coconut fibers

6.2.2. Synthesis of biocomposites

6.2.2.1. Mechanical properties of biocomposites

6.2.2.1.1. Mechanical properties of ramie fiber reinforced biocomposites

6.2.2.1.2. Mechanical properties of coconut fiber reinforced biocomposites

6.2.2.2. Fractured surface morphology of biocomposites

6.2.2.2.1. Fractured surface morphology of biocomposites reinforced with ramie fibers

6.2.2.2.2. Fractured surface morphology of biocomposites reinforced with coconut fibers

7. SUMMARY AND CONCLUSIONS

REFERENCES

APPENDIX

1. List of Publications
2. Papers presented in Conferences