LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title / Figure Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER – 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 1.1.</td>
<td>Lignocellulosic framework</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.2.</td>
<td>(a) Etching/cleaning/ablation with plasma and (b) grafting/polymerization with plasma</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.3.</td>
<td>Structure of cellulose</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.4.</td>
<td>Action of enzyme on plant cell</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.5.</td>
<td>Laccase-assisted grafting of functional molecule on lignocellulosics</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER – 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 2.1.</td>
<td>Photos of sisal fibers: (a) before and (b) after 2 days of bacterial treatment. (c) SEM micrograph of sisal fiber surface after culture in fermentor, showing that the sisal surface is partially covered by bacterial cellulose</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.2.</td>
<td>Effect of: (a) incubation time and pH on cellulose production and (b) glucose concentration and sodium nitrate concentration on cellulose production</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.3.</td>
<td>Freeze fracture TEM image of disintegrated BS20</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.4.</td>
<td>SEM micrographs of the four A. venetum samples: (a) the bast of A. Venetum (b) Fiber-M (c) Fiber-H (d) Fiber-B</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.5.</td>
<td>SEM images of unbleached kraft pulp fibers, showing: (a) control fibers (b) laccase-treated and (c) laccase/BPH treated fibers</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.6.</td>
<td>Attachment of anchor groups (i.e. phenolic amines) to lignin moieties of wood for further functionalization</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.7.</td>
<td>Coupling of non-polar chains onto fiber surface</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.8.</td>
<td>Chemical structure of modified cellulose</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.9.</td>
<td>Scanning electron microscope (SEM) images of handsheets made from: (a) control pulp (b) laccase-treated pulp (c) laccase-histidine treated pulp</td>
<td>37</td>
</tr>
</tbody>
</table>
Figure 2.10. Micrograph of abaca fiber surface morphology: (a) unmodified (b) plant system digestion (NDS) modified and (c) fibrillation

Figure 2.11. SEM micrographs of: (a) bacterial cellulose-modified sisal (b) acetone-treated and bacterial cellulose-modified sisal fibers and the corresponding CAB matrix cavities after single fiber pull-out testing

Figure 2.12. Single fiber pullout results for hemp and sisal fibers in CAB matrix (&) plant sisal fiber (Sisal-N) (*) sisal fiber modified with bacterial cellulose (Sisal-NBC) (^) plant hemp fiber (Hemp-N) (~) hemp fiber modified with bacterial cellulose (Hemp-NBC)

Figure 2.13. SEM of 50 % jute fiber/PP composites

Figure 2.14. SEM of 50 wt % of wood powder within PP. The wood powder is circled

Figure 2.15. SEM of ramie fibers: (a) control (b) plasma treated for 24 s with ethanol pretreatment

Figure 2.16. SEM images of: (a) untreated wool (b) C2F6 plasma treated wool; (c) O2 plasma treated wool (d) untreated cotton (e) C2F6 plasma treated cotton (f) O2 plasma treated cotton

Figure 2.17. Surface roughness of different plasma gases treated wool (left) and cotton (right)

CHAPTER – 3

Figure 3.1. Bacteria and fungi: (a) *Brevibacillus Parabrevis* (b) *Streptomyces albaduncus* (c) *Phanerochete chrysosporium* (d) *Trichoderma reesei* (e) *Escherichia coli* (f) *Staphylococcus aureus*

CHAPTER – 4

Figure 4.1. Effect of carbon sources on cellulase activity: (a) *Brevibacillus parabrevis* cellulase (b) *Streptomyces albaduncus* cellulase

Figure 4.2. Effect of nitrogen sources on cellulase activity: (a) *Brevibacillus parabrevis* cellulase (b) *Streptomyces albaduncus* cellulase

Figure 4.3. Effect of pH on cellulase activity: (a) *Brevibacillus parabrevis* cellulase (b) *Streptomyces albaduncus* cellulase

Figure 4.4. Effect of temperature on cellulase activity: (a) *Brevibacillus parabrevis* cellulase (b) *Streptomyces albaduncus* cellulase
Figure 4.5. Effect of time period on cellulase activity: (a) *Brevibacillus parabrevis* cellulase (b) *Streptomyces albaduncus* cellulase

Figure 4.6. Effect of carbon sources on cellulase activity: (a) *Phanerochaete chrysosporium* cellulase (b) *Trichoderma reesei* cellulase

Figure 4.7. Effect of nitrogen sources on cellulase activity: (a) *Phanerochaete chrysosporium* cellulase (b) *Trichoderma reesei* cellulase

Figure 4.8. Effect of pH on cellulase activity: (a) *Phanerochaete chrysosporium* cellulase (b) *Trichoderma reesei* cellulase

Figure 4.9. Effect of temperature on cellulase activity: (a) *Phanerochaete chrysosporium* cellulase (b) *Trichoderma reesei* cellulase

Figure 4.10. Effect of time period on cellulase activity: (a) *Phanerochaete chrysosporium* cellulase (b) *Trichoderma reesei* cellulase

Figure 4.11. SEM of ramie fibers: (a) Raw ramie fiber (b) RB-01 (c) RB-02 (d) RB-03 (e) RB-04 (f) RB-05

Figure 4.12. SEM of ramie fibers: (a) Raw ramie fiber (b) RS-01 (c) RS-02 (d) RS-03 (e) RS-04 (f) RS-05

Figure 4.13. XRD of raw and cellulase (*Brevibacillus parabrevis*) treated ramie fibers

Figure 4.14. XRD of raw and cellulase (*Streptomyces albaduncus*) treated ramie fibers

Figure 4.15. SEM of ramie fibers: (a) Raw ramie fiber (b) RP-01 (c) RP-02 (d) RP-03 (e) RP-04 (f) RP-05

Figure 4.16. SEM of ramie fibers: (a) Raw ramie fiber (b) RT-01 (c) RT-02 (d) RT-03 (e) RT-04 (f) RT-05

Figure 4.17. XRD of raw and cellulase (*Phanerochaete chrysosporium*) treated ramie fibers

Figure 4.18. XRD of raw and cellulase (*Trichoderma reesei*) treated ramie fibers

Figure 4.19. TGA of raw and cellulase (*Brevibacillus parabrevis*) treated ramie fibers

Figure 4.20. TGA of raw and cellulase (*Streptomyces albaduncus*) treated ramie fibers

Figure 4.21. Moisture absorption studies of raw and cellulase (*Brevibacillus parabrevis*) treated ramie fibers at: (a)
Moisture absorption studies of raw and cellulase (*Streptomyces albaduncus*) treated ramie fibers at: (a) 55% RH (b) 75% RH

Figure 4.22.

TGA of raw and cellulase (*Phanerochaete chrysosporium*) treated ramie fibers

Figure 4.23.

TGA of raw and cellulase (*Trichoderma reesei*) treated ramie fibers

Figure 4.24.

Moisture absorption studies of raw and cellulase (*Phanerochaete chrysosporium*) treated ramie fibers at: (a) 55% RH (b) 75% RH

Figure 4.25.

Moisture absorption studies of raw and cellulase (*Trichoderma reesei*) treated ramie fibers at: (a) 55% RH (b) 75% RH

CHAPTER – 5

Figure 5.1. Molecular structures of natural phenols: (a) PCA (b) FA (c) SA (d) EG

Figure 5.2. Optimization of phenol concentration: (a) PCA (b) FA (c) EG (d) SA

Figure 5.3. Optimization of laccase concentration for: (a) CF-g-PCA (b) CF-g-FA (c) CF-g-EG (d) CF-g-SA

Figure 5.4. Optimization of incubation period for: (a) CF-g-PCA (b) CF-g-FA (c) CF-g-EG (d) CF-g-SA

Figure 5.5. FTIR spectra of raw and PCA biografted coconut fibers

Figure 5.6. FTIR spectra of raw and FA biografted coconut fibers

Figure 5.7. FTIR spectra of raw and EG biografted coconut fibers

Figure 5.8. FTIR spectra of raw and SA biografted coconut fibers

Figure 5.9. XRD of raw and: (a) PCA biografted fibers (b) FA biografted fibers (c) EG biografted fibers (d) SA biografted fibers

Figure 5.10. SEM of coconut fibers: (a) Raw coconut fiber (b) CF-g-PCA(1) (c) CF-g-PCA(2) (d) CF-g-PCA(3)

Figure 5.11. SEM of coconut fibers: (a) Raw coconut fiber (b) CF-g-FA(1) (c) CF-g-FA(2) (d) CF-g-FA(3)

Figure 5.12. SEM of coconut fibers: (a) Raw coconut fiber (b) CF-g-EG(1) (c) CF-g-EG(2) (d) CF-g-EG(3)
Figure 5.13. SEM of coconut fibers: (a) Raw coconut fiber (b) CF-g-SA(1) (c) CF-g-SA(2) (d) CF-g-SA(3)

Figure 5.14. TGA of raw and: (a) PCA biografted (b) FA biografted (c) EG biografted (d) SA biografted

Figure 5.15. Moisture absorption studies at 55% RH of raw coconut fibers and: (a) CF-g-PCA (b) CF-g-FA (c) CF-g-EG (d) CF-g-SA

Figure 5.16. Moisture absorption studies at 75% RH of raw coconut fibers and: (a) CF-g-PCA (b) CF-g-FA (c) CF-g-EG (d) CF-g-SA

CHAPTER – 6

Figure 6.1. Antibacterial studies against E. coli: (a) Bacterial control (b) Raw coconut fibers (c) CF-g-PCA (d) CF-g-FA (e) CF-g-EG (f) CF-g-SA

Figure 6.2. Antibacterial studies against S. aureus: (a) Bacterial control (b) Raw coconut fibers (c) CF-g-PCA (d) CF-g-FA (e) CF-g-EG (f) CF-g-SA

Figure 6.3. Tensile load-strain curves of neat PBS, PBS+Ramie fiber and: (a) PBS+RB (b) PBS+RS (c) PBS+RP (d) PBS+RT, biocomposites with 0.5% fiber content

Figure 6.4. Tensile load-strain curves of neat PBS, PBS+Ramie fiber and: (a) PBS+RB (b) PBS+RS (c) PBS+RP (d) PBS+RT, biocomposites with 1% fiber content

Figure 6.5. Effect of fiber content on the tensile strength of neat PBS, PBS+ Ramie fiber and: (a) PBS+RB (b) PBS+RS (c) PBS+RP (d) PBS+RT

Figure 6.6. Flexural load-strain curves of neat PBS, PBS+Ramie fiber and: (a) PBS+RB (b) PBS+RS (c) PBS+RP (d) PBS+RT, biocomposites with 0.5% fiber content

Figure 6.7. Flexural load-strain curves of neat PBS, PBS+Ramie fiber and: (a) PBS+RB (b) PBS+RS (c) PBS+RP (d) PBS+RT, biocomposites with 1% fiber content

Figure 6.8. Effect of fiber content on the flexural strength of neat PBS, PBS+Ramie fiber and: (a) PBS+RB (b) PBS+RS (c) PBS+RP (d) PBS+RT

Figure 6.9. Tensile load-strain curves of neat PBS, PBS+Coconut fiber and: (a) PBS+CF-g-PCA (b) PBS+CF-g-FA (c) PBS+CF-g-EG (d) PBS+CF-g-SA, biocomposites with 0.5% fiber content

Figure 6.10. Tensile load-strain curves of neat PBS, PBS+Coconut fiber and: (a) PBS+CF-g-PCA (b) PBS+CF-g-FA (c) PBS+CF-g-EG (d) PBS+CF-g-SA, biocomposites with
1% fiber content

Figure 6.11. Effect of fiber content on the tensile strength of neat PBS, PBS+Coconut fiber and: (a) PBS+CF-g-PCA (b) PBS+CF-g-FA (c) PBS+ CF-g-EG (d) PBS+CF-g-SA

Figure 6.12. Flexural load-strain curves of neat PBS, PBS+Coconut fiber and: (a) PBS+CF-g-PCA (b) PBS+CF-g-FA (c) PBS+ CF-g-EG (d) PBS+CF-g-SA, biocomposites with 0.5% fiber content

Figure 6.13. Flexural load-strain curves of neat PBS, PBS+Coconut fiber and: (a) PBS+CF-g-PCA (b) PBS+CF-g-FA (c) PBS+ CF-g-EG (d) PBS+CF-g-SA, biocomposites with 1% fiber content

Figure 6.14. Effect of fiber content on the flexural strength of neat PBS, PBS+Coconut fiber and (a) PBS+CF-g-PCA (b) PBS+CF-g-FA (c) PBS+ CF-g-EG (d) PBS+CF-g-SA

Figure 6.15. Fractured surface morphology of biocomposites: (a) PBS+Ramie fibers (b) PBS+RB (c) PBS+RS (d) PBS+RP (e) PBS+RT

Figure 6.16. Fractured surface morphology of biocomposites: (a) PBS+Coconut fibers (b) PBS+CF-g-PCA (c) PBS+CF-g-FA (d) PBS+CF-g-EG (e) PBS+CF-g-SA