Contents

1 Introduction .. 1

1.1 Historical background 2

1.2 Bohr's theory ... 4

1.2.1 Natural broadening (Radiation damping) 5

1.2.2 Thermal broadening (Doppler broadening) 5

1.2.3 Combination of profiles (The Voigt profile) 5

1.3 Angular momentum and parity of an atomic energy level 6

1.4 Spectropolarimetry .. 7

1.5 Scope of the thesis 10

2 Energy Levels of an Atom in an Arbitrary External Electric Field 15

2.1 Introduction ... 15

2.2 Interaction of an atom with an arbitrary charge distribution 16

2.3 Level splitting of an atom with spin \(J = 1 \) 21

2.3.1 Dependence of level splitting on the asymmetry parameter \(\eta \) 22
2.4 Level splitting of an atom with spin $J = 3/2$

3 Energy Levels of an Atom in Combined External Electric and Magnetic Fields

3.1 Introduction

3.2 The case of $J = 1$

3.2.1 Magnetic field B along the Z-axis of PAF

3.2.2 Magnetic field B along the X-axis of PAF

3.2.3 Magnetic field B along the Y-axis of PAF

3.2.4 Arbitrary orientation of B with respect to the PAF

3.3 The case of $J = 3/2$

3.3.1 Magnetic field B along the Z-axis of PAF

3.3.2 Magnetic field B along the X-axis of PAF

3.3.3 Magnetic field B along the Y-axis of PAF

3.3.4 Arbitrary orientation of B with respect to the PAF

4 Atomic Polarization

4.1 Introduction

4.2 Atomic polarization for $J = 1$

4.3 Atomic polarization for $J = 3/2$

4.4 Atomic polarization in the combined presence of electric quadrupole and uniform magnetic fields
5 Polarization of Radiation

5.1 Introduction ... 56
5.2 Radiation in the Coulomb gauge 57
5.3 Polarization states of radiation 58
5.4 Density matrix formalism for radiation 60
5.5 The relation between Stokes parameters and polarized radiation field tensors ... 61
5.6 Multipole states of the radiation field 62
5.7 Quantum field .. 63

6 General Theory of the Emitted Line Polarization by an Atom in the Presence of External Fields

6.1 Introduction .. 67
6.2 General theory of the line polarization when both the upper and lower atomic levels are split by the presence of external fields 69
6.3 Special case \(J_u = 1, J_l = 0 \) 73
6.4 Zeeman terms and Cross terms 73
6.5 Polarization of emitted lines in \(J = 1 \) to \(J = 0 \) transition 76
 6.5.1 Polarization density matrix for radiation 76
 6.5.2 Stokes line profiles formed in the presence of a pure magnetic field .. 78
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.3</td>
<td>Stokes line profiles formed in the presence of a pure electric</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>quadrupole field</td>
<td></td>
</tr>
<tr>
<td>6.5.4</td>
<td>Stokes line profiles formed in the presence of both magnetic and</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>electric quadrupole fields</td>
<td></td>
</tr>
<tr>
<td>6.5.4.1</td>
<td>Magnetic field B along the Z-axis of PAF</td>
<td>83</td>
</tr>
<tr>
<td>6.5.4.2</td>
<td>The case of arbitrary orientation of B with respect to the PAF</td>
<td>86</td>
</tr>
<tr>
<td>6.6</td>
<td>Polarization of emitted lines in $J = 3/2$ to $J = 1/2$ transition</td>
<td>88</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Polarization density matrix for radiation</td>
<td>88</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Stokes line profiles formed in the presence of a pure magnetic field</td>
<td>89</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Stokes line profiles formed in the presence of a pure electric</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>quadrupole field</td>
<td></td>
</tr>
<tr>
<td>6.6.4</td>
<td>Stokes line profiles formed in the presence of combined electric</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>quadrupole field and arbitrary orientation of magnetic field</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>General Formalism for Scattering of Polarized Radiation</td>
<td>116</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>116</td>
</tr>
<tr>
<td>7.2</td>
<td>Preliminaries</td>
<td>119</td>
</tr>
<tr>
<td>7.3</td>
<td>Eigenvalues and eigenstates of \mathcal{H}_0 for the atom</td>
<td>120</td>
</tr>
<tr>
<td>7.4</td>
<td>Interaction between the radiation field and non-relativistic atomic</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>electron</td>
<td></td>
</tr>
</tbody>
</table>
7.5 Kinematics .. 122
7.6 Quantum theory of scattering 123
 7.6.1 Resonance and fluorescence scattering 128
 7.6.2 Hanle effect .. 129
 7.6.3 General case of Raman scattering 130
7.7 Differential cross-section ... 132
7.8 The polarized line scattering matrices 134
 7.8.1 Phase matrix in the case of a uniform magnetic field 136
 7.8.2 Hanle scattering phase matrix for uniform magnetic field ... 139
 7.8.3 Scattering phase matrix for combined electric and uniform mag-
 netic fields .. 140
7.9 Results and discussion .. 144

8 Summary and Outlook .. 155

References ... 158