Chapter 3

σ(∗)-RINGS

For a ring endomorphism σ of a ring R, σ is said to be a rigid endomorphism if $a\sigma(a) = 0$ implies $a = 0$ for $a \in R$, see [52]. A ring R is called a σ-rigid ring if there exists a σ-rigid endomorphism of R.

In [53], Kwak extend the σ-rigid property of a ring R to the prime radical $P(R)$ of R. We study the characterisation of a $\sigma(\ast)$-ring and their related properties. Note that any rigid endomorphism is a monomorphism and σ-rigid rings are reduced rings (i.e. rings without non-zero nilpotent elements), but there exist an endomorphism of a commutative reduced ring which is not rigid, see ([49], Example 9). The next definition appears in [53].

Definition 3.1. Let σ be an endomorphism of a ring R. We say that R is a $\sigma(\ast)$-ring if $a\sigma(a) \in P(R)$ implies that $a \in P(R)$ for $a \in R$.

Example 3.1. (Example (2) of Kwak [53]) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field and $\sigma : R \to R$ is defined by $\sigma\left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\right) = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}$. Then $P(R) = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ and it can be seen that σ is an endomorphism of R and that R is a $\sigma(\ast)$-ring.
We note that the above ring is not \(\sigma \)-rigid. For let \(0 \neq a \in F \). Then
\[
\begin{pmatrix}
0 & a \\
0 & 0
\end{pmatrix}
\sigma
\begin{pmatrix}
0 & a \\
0 & 0
\end{pmatrix}
= \begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}, \text{ but } \begin{pmatrix}
0 & a \\
0 & 0
\end{pmatrix} \neq \begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}
\]

Example 3.2. (Example (1.3) of Bhat [18]) Let \(R = \mathbb{C} \), the field of complex numbers. Then \(\sigma : R \to R \) be the map defined by \(\sigma(a + \iota b) = a - \iota b \), for all \(a, b \in R \) is an automorphism of \(R \) and \(R \) is a \(\sigma \)-rigid ring.

3.1 Completely prime ideals of skew polynomial rings over \(\sigma(\ast) \)-rings

We begin this section with the following proposition:

Proposition 3.1. (Proposition (2) of [19]) Let \(R \) be a ring and \(\sigma \) an endomorphism of \(R \). If \(R \) is a \(\sigma(\ast) \)-ring, then \(P(R) \) is completely semiprime.

Proof. Let \(a \in R \) be such that \(a^2 \in P(R) \). Then
\[
a\sigma(a)\sigma(a) = \sigma(a)\sigma(a)\sigma^2(a) \in \sigma(P(R)) = P(R).
\]
So \(a\sigma(a) \in P(R) \) and it follows that \(a \in P(R) \).

Proposition 3.2. (Proposition (3) of [19]) Let \(R \) be a \(\sigma(\ast) \) ring and \(U \in MinSpec(R) \) such that \(\sigma(U) = U \). Then \(U(S(R)) = U[x; \sigma] \) is a completely prime ideal of \(S(R) = R[x; \sigma] \).

Proof. The Proposition (3.1) implies that \(P(R) \) is completely semiprime ideal of \(R \) and \(U \) is completely prime by ([69], Proposition 1.11). Note that \(\sigma \) can be extended to an automorphism \(\overline{\sigma} \) of \(R/U \). It is well known that \(S/U(S(R)) \simeq (R/U)[x; \overline{\sigma}] \) and consequently \(U(S(R)) \) is a completely prime ideal of \(S(R) \).
Theorem 3.3. (Theorem (2.4) of Bhat and Kumari [15]) Let R be a Noetherian ring and σ an automorphism of R. Then R is a $\sigma(\ast)$-ring if and only if for each minimal prime U of R, $\sigma(U) = U$ and U is completely prime ideal of R.

Proof. Let R be a Noetherian ring such that $\sigma(U) = U$, U is a completely prime ideal of R and $a \in R$ such that $a\sigma(a) \in P(R) = \cap_{i=1}^{n}U_i$, where U_i are the minimal primes of R. Since for each $i, \sigma(a) \in U_i$, then $a \in U_i$. Hence, $a \in P(R)$ and it follows that R is a $\sigma(\ast)$-ring.

Conversely, suppose that R is a $\sigma(\ast)$-ring. Then by ([14], Proposition (2.1)) we have that $P(R)$ is a completely semiprime ideal of R and $\sigma(U) = U$, for all $U \in \text{MinSpec}(R)$.

Now suppose that $U = U_1$ is not completely prime. Then there exists $a, b \in R \setminus U$ with $ab \in U$ and we obtain that c be any element of $b(U_2 \cap U_3 \cap ... \cap U_n)a$. Then $c^2 \in \cap_{i=1}^{n}U_i = P(R)$ implies $b(U_2 \cap U_3 \cap ... \cap U_n)a \subseteq U$. Hence, $bR(U_2 \cap U_3 \cap ... \cap U_n)Ra \subseteq U$ and by the fact that U is prime, we have that $a \in U, U_i \subseteq U$, for some $i \neq 1$ or $b \in U$. None of these can occur, so U is completely prime. □

Proposition 3.4. (Proposition (2.1) of [24]) Let R be a right Noetherian \mathbb{Q}-algebra, σ an automorphism of R such that R is a $\sigma(\ast)$-ring and δ a σ-derivation of R. Then $\sigma(U) = U$ and $\delta(U) \subseteq U$, for all $U \in \text{MinSpec}(R)$.

Proof. We will first show that $P(R)$ is completely semiprime. In fact, let $a \in R$ such that $a^2 \in P(R)$. Then

$$a\sigma(a)\sigma(a\sigma(a)) = a\sigma(a)\sigma(a)\sigma^2(a) \in \sigma(P(R)) = P(R).$$

Thus, $a\sigma(a) \in P(R)$ and we have that $a \in P(R)$.

We next show that $\sigma(U) = U$, for all $U \in \text{MinSpec}(R)$. In fact, let $U = U_1$
be a minimal prime ideal, $U_2, U_3, ..., U_n$ the other minimal primes of R and suppose that $\sigma(U) \neq U$. Then $\sigma(U)$ is also a minimal prime ideal of R. Renumbering the minimal prime we have that $\sigma(U) = U_n$. Let $a \in \cap_{i=1}^{n-1} U_i$. Then $\sigma(a) \in U_n$, and so $a\sigma(a) \in \cap_{i=1}^{n} U_i = P(R)$. By assumption we have that $a \in P(R)$ and consequently $\cap_{i=1}^{n-1} U_i \subseteq U_n$ which implies that $U_i \subseteq U_n$, for some $i \neq n$, which is impossible. Hence $\sigma(U) = U$, for all $U \in \text{MinSpec}(R)$.

Let now $T = \{a \in U$ such that $\delta^k(a) \in U$, for all integers $k \geq 1\}$. First of all, we will show that T is an ideal of R. Let $a, b \in T$. Then $\delta^k(a) \in U$ and $\delta^k(a) \in U$, for all integers $k \geq 1$. Now $\delta^k(a - b) = \delta^k(a) - \delta^k(b) \in U$, for all $k \geq 1$. Therefore, $a - b \in T$. Therefore, T is a δ-invariant ideal of R.

We will now show that $T \in \text{Spec}(R)$. Suppose $T \notin \text{Spec}(R)$. Let $a \notin T, b \notin T$ be such that $aRb \subseteq T$. Let t, s be least such that $\delta^t(a) \notin U$ and $\delta^s(b) \notin U$. Now there exists $c \in R$ such that $\delta^t(a)c \sigma^t(\delta^s(b)) \notin U$. Let $d = \sigma^{-t}(c)$. Now $\delta^{t+s}(adb) \in U$ as $aRb \subseteq T$. This implies on simplification that $\delta^t(a)\sigma^t(d)\sigma^t(\delta^s(b)) + u \in U$, where u is sum of terms involving $\delta^l(a)$ or $\delta^m(b)$, where $l < t$ and $m < s$. Therefore, by assumption $u \in U$ which implies that $\delta^t(a)\sigma^t(d)\sigma^t(\delta^s(b)) \in U$. This is a contradiction. Therefore, our supposition must be wrong. Hence $T \in \text{Spec}(R)$. Now $T \subseteq U$, so $T = U$ as $U \in \text{MinSpec}(R)$. Hence $\delta(U) \subseteq U$. \hfill \square

Theorem 3.5. (Theorem (2.6) of Bhat [15]) Let R be a Noetherian ring and σ an automorphism of R such that R is a $\sigma(\ast)$-ring. Then $R[x; \sigma]$ is also a $\sigma(\ast)$-ring.

Proof. First of all show that $\sigma(P) = P$, for all $P \in \text{MinSpec}(S(R))$. Let $P \in \text{MinSpec}(S(R))$. Then by ([10], Theorem (2.4)) there exists $U \in \text{MinSpec}(R)$ such that $P = U^0[x; \sigma]$. Now R is a $\sigma(\ast)$-ring implies that
\[\sigma(U) = U \] by Theorem (3.3) and therefore, \(U^0 = U \). So \(P = U[x; \sigma] \) and thus \(\sigma(P) = P \).

We now show that \(P \) is completely prime. Let

\[f(x) = x^n a_n + x^{n-1} a_{n-1} + \ldots + a_0 \]

and

\[g(x) = x^m b_m + x^{m-1} b_{m-1} + \ldots + b_0 \]

in \(R[x; \sigma] \) be such that

\[f(x)g(x) \in P = U[x; \sigma] \] and \(g(x) \notin U[x; \sigma] \).

This implies that

\[x^{n+m} \sigma^m(a_n)b_m + x^{n+m-1} \sigma^m(a_{n-1})b_m + x^{n+m-1} \sigma^{m-1}(a_n)b_{m-1} + \ldots + a_0 b_0 \in U[x; \sigma] \]

Now \(g(x) \notin U[x; \sigma] \) (say \(b_m \notin U \)). Now \(\sigma^m(a_n)b_m \in U \). Also \(U \) is completely prime by Theorem (3.3), therefore, \(\sigma^m(a_n) \in U \); i.e. \(a_n \in U \).

Now \(\sigma^m(a_{n-1})b_m + \sigma^{m-1}(a_n)b_{m-1} \in U \) implies that \(\sigma^m(a_{n-1})b_m \in U \). Now \(b_m \notin U \) implies that \(\sigma^m(a_{n-1}) \in U \); i.e. \(a_{n-1} \in U \).

With the same process in a finite number of steps it can be seen that \(a_i \in U \), for all \(i, 0 \leq i \leq n-2 \) also.

Therefore, \(a_i \in U \), for all \(i, 0 \leq i \leq n \); i.e. \(f(x) \in P = U[x; \sigma] \).

Thus, \(\sigma(P) = P \) and \(P \) is completely prime, for all \(P \in \text{MinSpec}(S(R)) \). Moreover \(S(R) \) is Noetherian by ([44], Theorem (1.14)). Hence by Theorem (3.3), we get that \(R[x; \sigma] \) is also a \(\sigma(*) \)-ring.

It has been also proved that if \(\sigma \) is an automorphism of \(R \), then it can be extended to an automorphism (say \(\overline{\sigma} \)) of \(R[x; \sigma] \) such that \(\sigma(x) = x \).

Theorem 3.6. (Theorem (2.4) of [24]) Let \(R \) be a Noetherian \(\mathbb{Q} \)-algebra, \(\sigma \)
an automorphism of \(R \) and \(\delta \) a \(\sigma \)-derivation of \(R \) such that \(\sigma(\delta(a)) = \delta(\sigma(a)) \), for all \(a \in R \). Then \(R \) is a \(\sigma(\ast) \)-ring implies that \(O(R) = R[x; \sigma, \delta] \) is a Noetherian \(\sigma(\ast) \)-ring.

Proof. Let \(R \) be a Noetherian ring and \(\sigma \) an automorphism of \(R \) such that \(R \) is a \(\sigma(\ast) \)-ring. We shall prove that \(O(R) = R[x; \sigma, \delta] \) is a Noetherian \(\sigma(\ast) \)-ring. For this we will show that any minimal \(P \in \text{MinSpec}(O(R)) \) is completely prime and \(\sigma(P) = P \).

Let \(P \in \text{MinSpec}(O(R)) \). Then by ([14], Lemma (2.2)) \(P \cap R \in \text{MinSpec}(R) \). Now \(R \) is a \(\sigma(\ast) \)-ring implies that \(\sigma(P \cap R) = P \cap R \) and \(P \cap R \) is a completely prime ideal of \(R \) by Theorem (3.3). Now Proposition (3.4) implies that \(\delta(P \cap R) \subseteq P \cap R \). Now ([16], Theorem (2.4)) implies that \(O(P \cap R) \) is a completely prime ideal of \(O(R) \). Now \(O(P \cap R) \subseteq P \) implies that \(O(P \cap R) = P \) as \(P \) is minimal. Now \(\sigma(P \cap R) = P \cap R \) implies that \(\sigma(P) = P \).

Thus, \(\sigma(P) = P \) and \(P \) is completely prime, for all \(P \in \text{MinSpec}(O(R)) \). Moreover \(O(R) = R[x; \sigma, \delta] \) is Noetherian by ([44], Theorem (2.6)). Hence by Theorem (3.3), \(R[x; \sigma, \delta] \) is a \(\sigma(\ast) \)-ring. \(\square \)

Theorem 3.7. (Theorem (2.5) of [24]) Let \(R \) be a right Noetherian \(\mathbb{Q} \)-algebra, \(\sigma \) an automorphism of \(R \) such that \(R \) is a \(\sigma(\ast) \)-ring and \(\delta \) a \(\sigma \)-derivation of \(R \). Then

1. If \(U \) is a minimal prime ideal of \(R \), then \(O(U) \) is a minimal prime ideal of \(O(R) \) and \(O(U) \cap R = U \).
2. If \(P \) is a minimal prime ideal of \(O(R) \), then \(P \cap R \) is a minimal prime ideal of \(R \).

Proof. (1) Let \(U \) be a minimal prime ideal of \(R \). Then by Proposition (3.4) \(\sigma(U) = U \) and \(\delta(U) \subseteq U \). Now on the same lines as in ([41], Theorem (2.22)) we have \(O(U) \in \text{Spec}(O(R)) \). Suppose \(L \subset O(U) \) be a minimal prime ideal
of $O(R)$. Then $L \cap R \subset U$ is a prime ideal of R, a contradiction. Therefore, $O(U) \in \text{MinSpec}(O(R))$. Now it is easy to see that $O(U) \cap R = U$.

(2) We note that σ can be extended to an endomorphism (say σ) of $R[x;\sigma,\delta]$ by $\sigma(\sum_{i=0}^{m} x^i a_i) = \sum_{i=0}^{m} x^i \sigma(a_i)$. Also δ can be extended to a σ-derivation (say δ) of $R[x;\sigma,\delta]$ by $\delta(\sum_{i=0}^{m} x^i a_i) = \sum_{i=0}^{m} x^i \delta(a_i)$.

Now Theorem (3.6) implies that $O(R) = R[x;\sigma,\delta]$ is a Noetherian $\sigma(\ast)$-ring. Therefore, Proposition (3.4) implies that $\sigma(P) = P$ and $\delta(P) = P$. So $\sigma(P \cap R) = P \cap R$ and $\delta(P \cap R) \subseteq P \cap R$. Now it can be seen that $P \cap R \in \text{Spec}(R)$ and therefore, $O(P \cap R) \in \text{Spec}(O(R))$. Now $O(P \cap R) \subseteq P$ implies that $O(P \cap R) = P$. □

3.2 Near completely prime ideal rings of skew polynomial rings over $\sigma(\ast)$-rings

Theorem 3.8. (Theorem (3.6) of [32]) Let R be a Noetherian ring and σ an automorphism of R such that R is a $\sigma(\ast)$-ring. Then $S(R) = R[x;\sigma]$ is Noetherian near completely prime ideal ring.

Proof. Since R is Noetherian, then by Theorem (2.1) we have that $S(R)$ is Noetherian. Let P be a minimal prime ideal of $S(R) = R[x;\sigma]$. Then by Lemma(2.4) we have that $P \cap R \in \text{MinSpec}(R), \sigma(P \cap R) = P \cap R$ and $(P \cap R)[x;\sigma] = P$. By the fact that R is Noetherian $\sigma(\ast)$-ring we have that $P \cap R$ is completely prime ideal by Theorem (3.3). By Theorem (2.8) we have that $P = (P \cap R)[x;\sigma]$ is completely prime. So, $R[x;\sigma]$ is near completely prime ideal ring. □
Question. Let R be a Noetherian ring and σ an automorphism of R such that R is a $\sigma(\ast)$-ring and δ a σ-derivation of R. Is $O(R) = R[x; \sigma, \delta]$ a Noetherian near completely prime ideal ring?

Question. Let R be a Noetherian ring and σ an automorphism of R such that R is a near completely prime ideal ring. Is $S(R) = R[x; \sigma]$ a near completely prime ideal ring?