NOTATIONS

All rings are associative with identity $1 \neq 0$. We list some standard notations:

\begin{itemize}
\item $=$ equals.
\item \neq does not equal.
\item \in belongs to.
\item \notin does not belong to.
\item \Rightarrow implies.
\item \subseteq subset.
\item \subset proper subset.
\item \supset superset.
\item \simeq isomorphic.
\item \leq less than or equal to.
\item \geq greater than or equal to.
\item $M \oplus N$ Direct sum of modules M and N.
\item \mathbb{N} The set of positive integers.
\item \mathbb{Z} The ring of integers.
\item \mathbb{Q} The field of rational numbers.
\item \mathbb{C} The field of complex numbers.
\item R An associative ring with identity $1 \neq 0$.
\item $P(R)$ The prime radical of R.
\item $N(R)$ The set of nilpotent elements of R.
\item $\text{Spec}(R)$ The set of prime ideals of R.
\item $\text{MinSpec}(R)$ The set of minimal prime ideals of R.
\end{itemize}
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ann(J)$</td>
<td>The annihilator of a subset J of an R-module M.</td>
</tr>
<tr>
<td>$Assas(M)$</td>
<td>The assassinator of a uniform R-module M.</td>
</tr>
<tr>
<td>M_R</td>
<td>A right module M over a ring R.</td>
</tr>
<tr>
<td>R_R</td>
<td>A ring R viewed as a right module over itself.</td>
</tr>
<tr>
<td>$Ass(M_R)$</td>
<td>The set of associated primes of M_R.</td>
</tr>
<tr>
<td>\mathbb{H}</td>
<td>The ring of quaternions.</td>
</tr>
<tr>
<td>ACC</td>
<td>Ascending Chain Condition.</td>
</tr>
</tbody>
</table>