CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Certificate</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Symbols and abbreviations</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Cadmium
 1.1.1 Lethal Concentration 50 (LC$_{50}$)
1.2 Histology
1.3 Cellular DNA Damage by Cd – DNA Fragmentation and Apoptosis
1.4 Metallothionein
1.5 Western Blot
1.6 Immunohistochemistry
1.7 Protein Purification
1.8 MALDI TOF MS
1.9 Homology Modelling
 1.9.1 Bioinformatics Software’s
 1.9.1.1 SWISSPROT
 1.9.1.2 PDB
 1.9.1.3 BLAST
 1.9.1.4 PROTPARAM
 1.9.1.5 CFSSP
 1.9.1.6 MODELLER9v8
 1.9.1.7 SPDBV
 1.9.1.8 RASMOL
CHAPTER 2 LITERATURE REVIEW 22

2.1 Cadmium Toxicity
2.2 Fish Histological Changes
2.3 Apoptosis
2.4 Metallothionein

CHAPTER 3 AIMS AND OBJECTIVES 38

CHAPTER 4 MATERIALS AND METHODS 41

4.1 Experimental Animal
 4.1.1 Distribution
 4.1.2 Identification of Experimental Fish
 4.1.3 Classification
 4.1.4 Morphology
 4.1.5 Justification

4.2 Animal Selection and Acclimatization
 4.2.1 Procedure
 4.2.2 LC50 Determination
 4.2.3 Procedure

4.3 Quantification of Cd
 4.3.1 Tissue Preparation
 4.3.2 Procedure

4.4 Histological Alterations Study
 4.4.1 Principle
 4.4.2 Procedure

4.5 Histomorphometric and Stereological Analysis
 4.5.1 Procedure

4.6 DNA Fragmentation
 4.6.1 Principle
 4.6.2 Procedure
 4.6.2.1 DNA Isolation
 4.6.2.2 Agarose Gel Electrophoresis of DNA
 4.6.2.2.1 Principle
 4.6.2.2.2 Procedure
 4.6.2.2.2.1 Gel Electrophoresis

4.7 DAPI Nuclear Staining
 4.7.1 Principle
 4.7.2 Procedure
4.8 Estimation of Caspase-3
 4.8.1 Procedure
4.9 Quantification of MT
 4.9.1 Procedure
4.10 Estimation of Total Protein
 4.10.1 Principle
 4.10.2 Procedure
4.11 MT Expression Analysis
 4.11.1 Antibody
 4.11.1.1 Metallothionein Antibody
 4.11.1.2 Beta Actin Antibody
 4.11.2 Principle
 4.11.3 Procedure
4.12 Immunohistochemical Analysis
 4.12.1 Principle
 4.12.2 Procedure
4.13 Metallothionein Purification
 4.13.1 Reagents
 4.13.2 Affinity Chromatography
 4.13.2.1 Principle
 4.13.2.2 Procedure
4.14 MALDI-TOF MS
 4.14.1 MT Molecular Weight
 4.14.1.1 Reagents
 4.14.1.2 Procedure
 4.14.2 MALDI-TOF MS (PMF)
 4.14.2.1 Procedure
 4.14.2.2 In-Gel Trypsin Digestion
 4.14.2.3 Sample Preparation for MALDI-TOF MS
 4.14.2.4 Peptide Mass Fingerprinting and MS/MS Ion Search
4.15 Homology Modeling
 4.15.1 Protein Databases
 4.15.2 Bioinformatics Software’s
 4.15.3 Procedure
4.16 Statistical Analysis

CHAPTER 5 RESULTS

5.1 Determination of LC$_{50}$
5.1.1 Physico-Chemical Parameters of Marine Water
5.1.2 LC₅₀

5.2 Cd Accumulation

5.2.1 Cd Accumulation in Liver
5.2.2 Cd Accumulation in Kidney
5.2.3 Cd Accumulation in Gill

5.3 Histological Alterations on Exposure to Cd

5.3.1 Liver Histological Analysis
5.3.2 Kidney Histological Analysis

5.4 Histomorphometric and Stereological Analysis

5.4.1 Liver Tissues

5.4.1.1 Diameter of Hepatocytes
5.4.1.2 Diameter of Hepatocytes Nuclei
5.4.1.3 Diameter of Sinusoids

5.4.2 Kidney Tissues

5.4.2.1 Histomorphometric Diametric Alterations in Nephrons
5.4.2.1.1 Diameter of Bowman’s capsules
5.4.2.1.2 Diameter of Glomerulus
5.4.2.1.3 Diameter of Tubules

5.4.2.2 Histomorphometric Volume Alterations in Nephrons
5.4.2.2.1 Volume of Glomerulus
5.4.2.2.2 Volume of Tubules

5.4.2.3 Histomorphometric Numerical Density Alterations in Nephrons
5.4.2.3.1 Numerical Density of Glomerulus
5.4.2.3.2 Numerical Density of Tubules

5.5 DNA Fragmentation Analysis

5.5.1 Liver Tissues
5.5.2 Kidney Tissues

5.6 Apoptotic Study

5.6.1 Nuclear Morphology of Hepatocytes in Liver Tissues
5.6.1.1 Quantification of Apoptotic Cells in Liver Tissues

5.6.2 Nuclear Morphology in Kidney Tissues
5.6.2.1 Quantification of Apoptotic Cells in Kidney Tissues

5.7 Estimation of Caspase-3 Activity

5.7.1 Caspase-3 Levels in Liver Tissues
5.7.2 Caspase-3 Levels in Kidney Tissues

5.8 MT Induction

5.8.1 MT Induction in Liver
5.8.2 MT Induction in Kidney
5.8.3 MT induction in Gill

5.9 Correlation between MT Induction and Cd Accumulation

5.9.1 Correlation between MT Induction and Cd Accumulation in Liver
5.9.2 Correlation between MT Induction and Cd Accumulation in Kidney
5.9.3 Correlation between MT Induction and Cd Accumulation in Gill

5.10 MT Expression – Western Blot

5.10.1 MT Expression in Liver Tissues
5.10.2 MT Expression in Kidney Tissues

5.11 Immunolocalization of MT

5.11.1 Localization of MT in Liver Tissues
5.11.2 Localization of MT in Kidney Tissues

5.12 Purification of MT

5.12.1 Affinity Chromatography
5.12.2 Western Blot – Confirmation of Purified MT
5.12.3 Evaluation of Ni\(^{2+}\) Leaking from the Affinity Chromatography Column

5.13 MALDI-TOF MS

5.13.1 Molecular Weight of MT
5.13.2 Peptide Mass Fingerprinting With SwisProt and NCBInr Databases
5.13.3 MT-1 Amino Acid Sequence in Liver of A. arius

5.14 Homology Modelling

5.14.1 Physico-Chemical Properties of MT–1
5.14.2 Primary Structure of MT-1
5.14.3 Secondary Structure of MT-1
5.14.4 3D Structure of MT-1
 5.14.4.1 Template Details
 5.14.4.2 Modeller Generated Models
 5.14.4.3 RasMol Results of Models
 5.14.4.4 SPDBV and Ramachandran Plot
 5.14.4.4.1 Validation of Model Structure using Ramachandran Plot
CHAPTER 6 DISCUSSION

6.1 LC_{50}
6.2 Cd Accumulation
6.3 Histological and Histomorphometric Alterations in Kidney Liver and Tissues
6.4 Apoptosis
6.5 Caspase-3 Activity
6.6 MT Induction
6.7 Correlation between Cd Accumulation and MT Induction
6.8 Western Blot
6.9 MT Localization by Immunohistochemical Analysis
6.10 Purification
6.11 MALDI-TOF
6.12 Homology Modelling

CHAPTER 7 SUMMARY AND CONCLUSION

7.1 Summary
7.2 Conclusion

REFERENCES 148
PUBLICATIONS 180