CONTENTS

List of Tables x - xi
List of figures xii - xiii

Chapter 1: Introduction, Historical Development and Motivation 1-18

1.1 Early historic development

1.2 Atoms and Molecules
 1.2.1 Atoms
 1.2.2 Molecules
 1.2.2.1 Classification of Molecules
 1.2.2.1.1 Linear Molecules
 1.2.2.1.2 Symmetric Top Molecules
 1.2.2.1.3 Spherical Top Molecules
 1.2.2.1.4 Asymmetric Top Molecules

1.3 Similarities and Differences in Atomic and Molecular Spectra
 1.3.1 L-S or Russell Saunders Coupling
 1.3.2 j-j Coupling
 1.3.3 Addition of Angular Momenta in Molecules

1.4 Electronic Spectra
 1.4.1 Diatomic Molecules
 1.4.2 Vibrational Structure
 1.4.3 Progressions and Sequences
 1.4.4 The Rotational Structure and P, Q, R Branches

1.5 Bibliography

1.6 Motivation

1.7 References
Chapter 2: Intensity Measurement and Rotational Temperature of CH Molecule

2.1 Introduction

2.2 Review of Earlier Work
 2.2.1 A^2Δ - X^2Π Transition
 2.2.2 a^4Σ – X^2Π Transition
 2.2.3 B^3Σ - X^2Π Transition
 2.2.4 C^2Σ^+ – X^2Π Transition
 2.2.5 D^2Π –X^2Π, E^2Σ –X^2Π, F^2Σ^+ – X^2Π and D^2Π – B^3Σ

2.3 Theory of Rotational Temperature
 2.3.1 The Hönl London Factor

2.4 Bands of CH observed in the Spectrum of Sun

2.5 Intensity Measurement

2.6 Result and Discussion

2.7 References

Chapter 3: Franck Condon Factors and r- Centroids of CH Molecule

3.1 Introduction

3.2 Expressions for F C Factors and r- Centroids

3.3 Method of Calculating F C Fs and r- Centroids

3.4 FCFs and r- Centtroids of the Band Systems of CH Molecule

3.5 Result and Discussion
 3.5.1 A^2Δ-X^2Π System
 3.5.2 a^4Σ – X^2Π System
 3.5.3 B^3Σ^− - X^2Π System
 3.5.4 C^2Σ^+ - X^2Π System

3.6 References
Chapter 4: Potential Energy Curves of CH Molecule

4.1 Introduction

4.2 Potential Energy Functions

4.3 The Zavitsas Potential Function

4.4 Anomalies Found in Zavitsas Potential Function and Their Rectification

4.5 The Dmitrieva – Zenevich (D-Z) Potential Function

4.6 Extended Rydberg Potential Function

4.7 Hulbert – Hirschfelder (H – H) Potential Function

4.8 Computation of Potential Energy Curves

4.9 Reduced Potential Curves (RPC)
 4.9.1 Properties of RPC
 4.9.2 Computation of RPCs
 4.9.3 Application of RPCs

4.10 Conclusion

4.11 References

Chapter 5: Dissociation Energy of CH Molecule

5.1 Introduction

5.2 Methods of Determining the Dissociation Energy

5.3 Method Employed to Calculate Dissociation Energy of CH

5.4 Morse and Rydberg Functions
 5.4.1 Morse Function
 5.4.2 Rydberg Function

5.5 The Method of Hou Shilin and Sun Weiguo

5.6 Result and Discussion

5.7 Inference

5.8 References
<table>
<thead>
<tr>
<th>Summary</th>
<th>129-130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publications</td>
<td>131</td>
</tr>
</tbody>
</table>